Смекни!
smekni.com

Синтез системы стабилизации (стр. 1 из 4)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное Образовательное Учреждение
Высшего Профессионального Образования

«Самарский государственный технический университет»

Кафедра электротехники, информатики

и компьютерных технологий

Курсовая работа

СИНТЕЗ СИСТЕМЫ СТАБИЛИЗАЦИИ

по дисциплине "Теория автоматического управления"

Выполнила: студентка

Принял: к.т.н. Будин Н.И.

Сызрань 2010


Техническое Задание

Вариант задания на курсовую работу определяется номером задания и вариантом задания (задание №5, вариант 7). Задание представляет собой функциональную схему системы стабилизации автоматического управления, изображенную на рис.1, исходные данные приведены в таблице 1.

Требуется спроектировать систему стабилизации автоматического управления, удовлетворяющую заданным условиям. исходная система состоит из набора неизвестных устройств, необходимо рассчитать корректирующие устройства.

Техническое задание включает в себя сведения о принципе действия нескорректированной САУ, ее функциональную схему, параметры всех звеньев системы, характеристики входных и возмущающих воздействий, показатели качества проектируемой САУ.

Для систем стабилизации, как правило, приводятся максимальная относительная ошибка системы ν (в %), перерегулирование σ (в %) и время переходного процесса tп. Кроме того, могут быть предъявлены некоторые другие требования, которые вводятся для индивидуализации содержания Курсовой работы. В частности, в данной курсовой работе время tп минимизируется при заданных ν и σ с учетом ограничений на значения выходного напряжения усилителя.

Рис. 1. Функциональная схема системы стабилизации.


В данной системе объектом регулирования является гидротурбина 1, регулируемой величиной - угловая скорость ω. Она при постоянном расходе воды изменяется в зависимости от нагрузки на валу турбины, т, е. от мощности Р, которая потребляется от генератора 2 (с увеличением мощности угловая скорость снижается, с уменьшением - возрастает). Таким образом, мощность Р является внешним возмущающим воздействием на объекте регулирования. Для регулирования угловой скорости предусмотрена заслонка 3, с помощью которой изменяется расход воды через турбину. Он однозначно зависит от вертикального перемещения X заслонки. Следовательно, перемещение заслонки X можно рассматривать как регулирующее воздействие объекта регулирования. Угловая скорость ω контролируется посредством тахогенератора 4, ЭДС Е которого сравнивается с задающим напряжением U0. Сигнал рассогласования ΔU через усилитель 5 управляет посредством электродвигателя 6 и редуктора 7 заслонкой 3.

Таблица 1

Вариант Т0 k0 k1 kт ky Р Тм Тя kэ ν σ U ω
с
кВт с с
% % B Рад/1
7 0,1 7 0,015 1,0 120 -75 0,014 0,002 0,02 0,25 25 110 30

Введение

Задача синтеза системы автоматического управления (САУ) заключается в выборе такой ее структуры, параметров, характеристик и способов их реализации, которые при заданных ограничениях наилучшим образом удовлетворяют требованиям, предъявляемым к системе.

Обычно определенная часть проектируемой системы задана. Она является исходной или нескорректированной САУ. Параметры ее функциональных элементов известны. В такой постановке задача проектирования сводится к определению корректирующего устройства (КУ), обеспечивающего заданные показатели качества системы.

Наиболее простым, наглядным и хорошо разработанным инженерным методом синтеза САУ является метод логарифмических амплитудных частотных характеристик (ЛАЧХ). Его идея основана на однозначной связи между переходным процессом в системе и ее ЛАЧХ. Исходя из этого, по заданным точностным и динамическим показателям сначала строится желаемая ЛАЧХ, а затем путем графического построения осуществляется приближение к ней частотных характеристик исходной системы. В результате такой процедуры определяется ЛАЧХ КУ. Корректирующее устройство может включаться в канал управления последовательно или встречно-параллельно. Вид коррекции предопределяет некоторые особенности синтеза, обусловленные методикой получения ЛАЧХ КУ.


1. Построение структурной схемы нескорректированной системы и определение передаточных функций ее звеньев

Рис. 2 структурная схема нескорректированной системы

Динамические свойства элементов САР описываются следующей системой уравнений:

- гидротурбина;

- тахогенератор;

- сравнивающий орган;

- электронный усилитель;

- электродвигатель совместно с редуктором и заслонкой.

Считаем, что все звенья системы линейны. Таким образом, в рассматриваемой системе отпадает необходимость линеаризации и можно сразу приступить к определению передаточных функций (ПФ) динамических звеньев.

Запишем в общем виде ПФ каждого звена системы:

ПФ усилителя:


ПФ электродвигателя совместно с редуктором и заслонкой:

ПФ гидротурбины:

ПФ тахогенератора:

ПФ возмущения (мощности):

Подставим числовые значения из Таблицы 1 в полученные выражения ПФ:

ПФ электродвигателя совместно с редуктором и заслонкой записаны в общем виде. Для определения типа электродвигателя исследуем его на колебательность, проверив условие:

Если оно выполняется, то электродвигатель является апериодическим звеном второго порядка, если не выполняется – колебательным звеном.

Подставляя значения получим

и
, получим:

4*0.002˂0.014; 0.008˂0.014

Условие выполняется, значит, электродвигатель – апериодическое звено второго порядка и его ПФ можно записать как:

Для нахождения коэффициентов

используем соотношения:

Подставив значения

и
, получим систему уравнений, решив которую, найдем
и

;
;

Получим квадратное уравнение:

Найдем дискриминант уравнения;

Определим корни:

Окончательный вид ПФ двигателя примет вид:

Таким образом, ПФ разомкнутой системы будет равна: