Смекни!
smekni.com

Система автоматического управления положением объекта (стр. 5 из 5)

Данные для построения желаемой ФЧХ представлены в таблице 9.

Таблица 9 – Данные для построения ФЧХ, соответствующей желаемой ЛАХ

ω,1/с 1 4 10 40 70 100 400 700 1000
φ(ω),град -91 -92 -95 -102 -105 -110 -156 -195 -225

3.5 Построение ЛАХ корректирующего устройства

Под коррекцией САР понимают придание системе требуемых динамических свойств при помощи корректирующих устройств.

Целью коррекции является удовлетворение требований, предъявляемых к запасу устойчивости системы и поведению ее в переходном процессе.

При встречно–параллельной коррекции корректирующее устройство включают в цепь обратной связи (ОС), охватывающей часть нескорректированной системы, т. е. в систему вводится дополнительная внутренняя ОС.

Одна из самых важных задач – определение места включения коррекции в систему. Обычно обратной связью охватываются элементы системы, оказывающие наибольшее влияние на ее быстродействие. Для этого охватим обратной связью исполнительный двигатель и ЭМУ. Функциональная схема системы при встречно–параллельной коррекции будет выглядеть следующим образом:

Рисунок 10 – Структурная схема скорректированной системы

Передаточная функция охваченных элементов:

Ей соответствует ЛАХ:

,

где КОХВДВ·КУМ=4,284·6,457=27,66

Передаточная функция неохваченных элементов равна их коэффициенту передачи:

Ей соответствует ЛАХ:

.

Передаточная функция внутреннего замкнутого контура равна:

,

где WОС(р) – передаточная функция местной обратной связи.

Передаточная функция скорректированной системы может быть записана в виде:


В рабочем диапазоне частот выполняется неравенство:

.

Находим ЛАХ обратной связи:

.

Выражение в квадратных скобках есть ЛАХ внутреннего замкнутого контура LО(ω). Для её построения достаточно опустить желаемую ЛАХ на 17 дБ. Тогда искомая ЛАХ обратной связи будет зеркальным отображением LО(ω). Построение ЛАХ корректирующего устройства показано в приложении А.

3.6 Выбор схемы и расчёт корректирующего устройства

Из рисунка А.1 видно, что передаточная функция корректирующего устройства:

,

где Тк1=0,042 с, Т2=0,035 с.

На частотах ω<ω3 LОС(ω) представляет собой прямую с наклоном +20дБ/дек, имеющую локальный наклон +40дБ/дек в интервале ωк1<ω<ωк2.

Характеристика с наклоном +20дБ/дек принадлежит идеальному дифференцирующему элементу. Поскольку входной величиной обратной связи является угол поворота электродвигателя, в качестве такого элемента выбираем тахогенератор с передаточной фукцией:

Выбор тахогенератора, он должен отвечать следующим требованиям:

1. Номинальная скорость вращения тахогенератора должна быть приблизительно равна или несколько больше номинальной скорости двигателя.

2. Момент инерции тахогенератора должен быть меньше момента инерции двигателя.

Выбираем тахогенератор серии ТП 20-6-0,5.

Технические характеристики тахогенератора представлены в таблице 10.

Таблица 10 – Данные тахогенератора типа

Крутизна характеристики, Вс/рад Номинальная частота вращения, об/мин Статический момент трения, Н*м Момент инерции якоря, кг×м2
0.057 3000 24,5*10-4 0.23×10–7

Как видно из таблицы 10, выбранный тахогенератор полностью удовлетворяет предъявляемым условиям.

Для получения локального наклона +40дБ/дек последовательно с тахогенератором следует включить активный фильтр с передаточной функцией:


.

Схема коррекции представлена на рисунке 11:

Рисунок 11 – Схема корректирующего устройства

На частоте ω=1 будем иметь 20lg(КОХВ) = 20lg(КОС) = 28,8 дБ.

Отсюда 20lg(КОС) = -28,8дБ, следовательно КОС = 0,036.

С другой стороны, КОСТГ·КФ. Выразим отсюда КФОСТГ=0,036/0,057=0,637.


(12)

При расчёте номиналов сопротивлений фильтра следует учитывать, что сопротивление нагрузки тахогенератора должно быть не менее 10 кОм, что будет способствовать минимизации погрешности от нелинейности функции преобразования.

Расчет фильтра, используемого в корректирующем устройстве, ведётся в соответствии с методикой, изложенной в /2/.

Зададимся R1=10 кОм, тогда, согласно (12), R2Ф·R1=0,036·10=0,36 кОм.

Номинальные значения емкостей определяются из соотношений:

Следовательно, зная из графика ЛАХ обратной связи (рисунок А.1) постоянные времени Тк1=0,042 с, Т2=0,035 с, найдём номинал ёмкости, используемой при построении фильтра: С1=Tк1/R1=0,042/10·103=4,2 мкФ,

Справочные данные резисторов и конденсаторов, взятые из /5/ и /7/ соответственноприведены в таблицах 10 и 11.

Таблица 10 – Резисторы, используемые при проектировании фильтра

Обозначение резистора Тип резистора Номинальное значение Отклонение, % Мощность, Вт
R1 С2 – 33 10 кОм 5 0,5
R2 C2 – 33 0,36 кОм 5 0,5

Таблица 11 – Конденсатор фильтра

Обозначение конденсатора Тип конденсатора Номинальное значение Отклонение, %
С1 К73-9А 4,3 мкФ 10

Корректирующее устройство выполнено на микросхеме К140УД7. Данные на микросхему приведены выше в таблице 8.

Найдём коэффициент усиления охваченных элементов при подключении корректирующего устройства:

.

Таким образом, коэффициент усиления уменьшился в два раза. Для его компенсации в предварительный усилитель введём еще один усилитель напряжения, собранный на операционном усилителе, с коэффициентом усиления равным двум.


4. Описание принципиальной схемы

На ротор сельсина датчика подаётся сигнал в виде угла поворота β. Со статора сельсина-приёмника соединённого с сельсином-датчиком по трансформаторной схеме снимается напряжение, поступающее на предварительный усилитель, выполненный на микросхеме К140УД7. Усиленный сигнал поступает на фазочувствительный выпрямитель со встроенным формирователем импульсов, который преобразует сигнал переменного тока в сигнал постоянного тока. ФЧВ имеет также и управляющий вход, на который подаётся напряжение той же частоты (50Гц), который имеет и входной сигнал. Роль аналогового ключа играет полевой транзистор VT1. Для регулировки коэффициента усиления системы, который уменьшился вследствие введения корректирующего устройства, был введён переменный резистор. На микросхеме DA7 выполнен сумматор, учитывающий сигнал прямой связи и сигнал, поступающий с корректирующего устройства. Буфер, собранный на комплиментарной паре усиливает выходной ток предварительного усилителя до уровня, необходимого для подачи на обмотку управления электромашинного усилителя. Электромашинный усилитель выполняет роль усилителя мощности, сигнал с которого поступает на исполнительный двигатель постоянного тока, откуда через понижающий редуктор – на объект управления. Одновременно с исполнительного электродвигателя сигнал поступает на корректирующее устройство, роль которого выполняет тахогенератор и активный фильтр, выполненный на микросхеме К140УД7. По цепи главной обратной связи сигнал поступает на ротор сельсин приёмника, со статора которого снимается сигнал рассогласования поступающий в системы для отработки.

В системе предусмотрен блок питания, выполненный на трансформаторе ТV1. С него снимается вторичное напряжение: постоянного тока 110В для питания электродвигателя; переменное 10 В, 50 Гц для подачи на полевой транзистор VT1, выполняющего роль аналогового ключа и управляющего работой ФЧВ; переменное 110 В, 400 Гц, подаваемое на статор сельсина-датчика и постоянное ±15 В для питания микросхем и комплиментарной пары транзисторов VT2 и VT3.


Заключение

В курсовой работе была спроектирована система автоматического управления положением объёкта. В ходе проектирования первоначально была разработана система на основе характеристик реальных элементов. Выбранные двигатель, сельсины, не могут обеспечить устойчивость системы, в чём мы убедились, проведя проверку системы на устойчивость с помощью логарифмических характеристик и по критерию А.В. Михайлова с помощью построенного годографа. Чтобы добиться устойчивости системы и заданных качественных характеристик, в систему было введено корректирующее устройство, выполненное в виде местной отрицательной обратной связи. В результате мы получили скорректированную систему, удовлетворяющую всем требованиям, предъявленным в техническом задании.


Список использованных источников

1 Баюков А.В. Полупроводниковые приборы. Справочник/ Под ред. Н.Н. Горюнова -2-е изд. – М.: Энегроатомиздат,1985.

2 Выгода Ю.А. Основы расчёта систем автоматического управления / Выгода Ю.А., Малёв Б.А., Марченко В.В., Балабаев М.С.. – Пенза.: ПВАиУ, 1970г.

3 Выгода Ю.А. Расчёт систем управления / Выгода Ю.А., Малёв Б.А., Мясникова Н.В. - Пенза, 2002г.

4 Гутников В.С. Интегральная электроника в измерительных устройствах. – Л.: “Энергоатомиздат”, 1988г.

5 Резисторы: Справочник / Под ред. И.И. Четверткова и В.М. Терехова. - М.: Радио и связь,1991г.

6 Справочник по полупроводниковым диодам, транзисторам и интегральным схемам / Под ред. Горюнова М.Н. – М.: “Энергия”, 1977г.

7 Конденсаторы: Справочник / Под ред. И.И.Четверткова - М.: Радио и связь,1983г.