Пласт “б3” содержит 24,1% НИЗ нефти по площади. С начала разработки отобрано 97,1% от НИЗ по пласту. Введена на нефть скважина 39485. В отчетном году под закачку освоены скважины 6076а, 6028в, 6304а, 39468, 39487. Произвели отключение пласта в добывающей скважине 6019б. В активную разработку в течении года введено 24 тыс. тонны извлекаемых запасов нефти.
Пласт “в” содержит 20,6% НИЗ нефти по площади. Накопленный отбор нефти составил 89,8% от запасов по пласту. Под нагнетание воды освоена скважина 6076а. Произвели отключение пласта в добывающей скважине 6149а.
Пласт «г1» содержит 14,9% НИЗ нефти по площади. С начала разработки отобрано 95,9% от извлекаемых запасов нефти по пласту. Введена на нефть скважина 39485.Отключение пласта из-за обводнения произведено в скважинах 6149а, 6144б, 6156а.
Пласт «г2+3» содержит 4,0% от НИЗ нефти по площади. Накопленный отбор составляет 99,8% от запасов по пласту. Произвели отключение пласта в добывающей скважине 6144б. В целом по блоку из 3078 тыс. т. текущих извлекаемых запасов около 50% связана с глинистыми высокопродуктивными коллекторами, более 30% с малопродуктивными. Таким образом, структура запасов сместилась в сторону их существенного ухудшения и, естественно, все технологические решения, в основном должны будут акцентированы на выработку этих запасов.
Остаточные запасы нефти высокопродуктивных неглинистых коллекторов, главным образом, связаны с зонами частичного заводнения и могут быть извлечены известными гидродинамическими методами воздействия на пласт.
3. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ.
3.1 Обзор существующей схемы и подготовки скважинной продукции в НГДУ «Лениногорскнефть»
В НГДУ «Лениногорскефть» применяется герметизированная высоконапорная система сбора и подготовки скважиной продукции.
Существующая система сбора и подготовки продукции скважин применяемая в НГДУ «Лениногорскнефть» отвечает всем основным требованиям:
- полную герметичность процесса сбора, транспортирования и подготовки,
- измерение количества продукции на каждой подключенной скважине,
- совместное или раздельное, после ГЗУ, транспортирование обводненной и не обводненной нефти газа,
- использование нефтесборных коллекторов для подготовки скважинной продукции к дальнейшей обработке (внутритрубная диэмульсация),
- сепарацию газа,
- подготовку товарной нефти (обезвоживание и обессиливание)
- подготовку сточной воды для ее дальнейшего использования в системе ППД,
- поточное измерение количества и качества продукции на различных этапах ее подготовки.
Основные преимущества такой схемы следующие:
- практически полное устранение потерь легких фракции за счет герметичности системы,
- возможность полной автоматизации сбора, подготовки и контроля качество продукции,
- возможность в некоторых случаях транспортирования скважиной продукции по всей площади месторождения за счет давления на устьях скважин.
Преимущественно систему сбора и подготовку можно представить следующим образом. Нефть, газ и вода поднятые не поверхность из скважин, под устьевым давлением, по выкидным коллекторам направляются на групповые замерные установки (ГЗУ). При большом удалении скважины от ГЗУ в настоящее время но их устье устанавливаются счетчики (СКЖ) данные с которых по радиоканалу передаются на центральный диспетчерский пульт ЦДНиГ, а продукция направляется в общий коллектор идущий от ГЗУ или непосредственно на дожимную насосную станцию (ДНС). Все ДНС оборудованы сепараторами, в которых осуществляется первая ступень сепарации, отделившийся газ направляется на компрессорные станции, а сепарированная жидкость откачивается на Лениногорский ДНС и УПС. Всего на Лениногорский ДНС с УПС сепарированная жидкость поступает с ДНС№1 (ЦДНиГ-2), №34 и №55 (ЦДНиГ-1) и не сепарированная непосредственно с 2-х ГЗУ №1727 и №1738.
Для завершения процесса диэмульсации до поступления жидкости на ЛДНС с УПС (в целях интенсификации использования промыслового оборудования и уменьшении металлоемкости головных сооружений) на всех ДНС и некоторых отдельно взятых ГЗУ и скважинах установлены точки подачи хим.реагента. Данная совмещенная технология позволяет существенно улучшить технико-экономические показатели сбора и подготовки нефти, очистки пластовых вод и сепарации газа. При этом значительно сокращается количество аппаратов и сооружении, необходимых для обработки всего объема жидкости и газа, уменьшается вязкость перекачиваемой жидкости и соответственно гидравлические сопротивления при транспортировке скважинной продукции.
3.2 Подготовка пластовой воды
С 1967 по 1997 г.г на промыслах Татарии было очищено 4332 млн.м3 пластовых и сточных вод, использовано в системе ППД более 3453 млн.м3 (или 79,7 %). При этом за счет применения резервуаров и булитов с ЖГФ, технологии обработки продукции скважин в трубопроводах и резервуаров с гидрофильными фильтрами подготовлено около 2563 млн. м3 (64 %) с экономическим эффектом порядка 280 млн. руб. в ценах до 1991 г.
Разработанные институтом ТатНИПИнефть технологии и средства очистки сточных вод при ровном качестве их подготовки отличаются от зарубежных более высокой надежностью, производительностью и низкими удельными эксплуатационными и капитальными затратами. Ориентировка на западные технологии означала бы применение менее эффективных решений. Так, как удельные капитальные вложения для узла очистки воды производительностью 7 тыс. м3/сут девонской воды в отечественном варианте (при равном качестве очистки) в 16 раз ниже, чем на установках США и в 36 раз ниже, чем стоимость оборудования.
Между стоимостью очистных сооружении и глубиной очистки сточных вод от нефти существует гиперболическая зависимость. С повышением глубины очистки сточных вод от нефти стоимость очистных сооружений резко возрастает.
Так при увеличении степени очистки воды с 75 до 15 мг/л по нефти, стоимость очистных сооружений объекта производительностью 5,5 тыс. м3/ сутки возрастет в три раза и составит 1,5 млн. долларов. При общем объеме сточных вод в ОАО «Татнефть» 368 тыс. м3/сутки.
К имеющемуся оборудованию необходимо было бы дополнительно закупить еще 67 установок. Кроме того, необходимо очищать воду и на многочисленных новых объектах, потребность в которых диктуется соображениями рациональной разработки нефтяных месторождений Татарстана.
Первоочередные задачи по улучшению качества воды и реконструкции системы ППД:
1. Улучшение качества очистки сточных вод на всех объектах водоподготовки. Сложность ситуации состоит в том, что в связи с опреснением сточных вод, увеличением содержания в них нежелательных химических реагентов, формированием тонкодисперсной эмульсии нефти, в воде с размерами капель 5-10 микрон существенно повышается ее стойкость и ухудшаются технологические свойства.
Эта задача может быть решена путем совершенствования гидрофильных и гидрофобных фильтров и гидрозатворов, а также путем применения гидродинамических автофлотационных аппаратов.
2. Привести в соответствие существующие мощности очистных сооружений с ожидаемым объемом очистки сточных вод по всем объектам.
3. Анализ системы ППД и ее адаптация к новым условиям.
4. Разработка техники и технологии подготовки сточных вод в системе ступенчато-целевой их очистки, исключающей возможность загрязнения забоя нагнетательных скважин продуктами коррозии водоводов.
5. Промышленные испытания аппаратов для очистки воды различных фирм.
6. Разработка каскадной технологии глубокой очистки и закачки
сточной воды в зависимости от коллекторских свойств заводняемых пластов и реконструкция на этой основе всей системы ППД.
7. Разработка раздельной технологии очистка пластовых и промышленных ливневых вод для снижения скорости коррозии оборудования и водоводов.
8. Разработка технологий по обеспечению предварительного сброса пластовых вод из продукции скважин при ДНС и т.д. с использованием принципа наложения карт систем нефтегазосдора и ППД.
9. Разработка комплекса технологических процессов по защите системы ППД от сброса в нее качественных вод, что в свою очередь практически невозможно без аналогичной защиты установок подготовки нефти, строительства узлов переработки промежуточных работ на скважинах и трубопроводах, а также оснащения всех систем соответствующим оборудованием и приборами контроля.
10. Разработка индивидуальных технологий и подбор необходимых комплексов оборудования по площадям и участкам, позволяющих решить проблему глубокой очистки воды перед ее закачкой с получением значительного экономического эффекта за счет увеличения межремонтных периодов нагнетательных скважин, снижения энергозатрат на закачку воды в пласт, увеличения добычи нефти из пласта.
Основным исполнителем данной программы был определен научно-технический центр экологически чистых технологий "ЭКОТЕХ" под руководством профессора Тронова В.Л..
Экспериментально установлено, что при любой системе очистки фильтрация закачиваемой воды через пористую среду сопровождается снижением ее проницаемости, причем, если при прокачке ультрофильтрованной воды (0,2 микрон) темпы снижения составляют порядка 0,15 % на один поровый объем, то при закачке неочищенной речной воды это снижение доходит до 2,2 % на прокаченный поровой объем. После прокачки около 130 и 36 паровых объемов темп падения проницаемости уменьшается, соответственно, до 0,02 и 0,17 % на один поровый объем прокачки.
На основе комплексного анализа петрофизических характеристик коллекторов различных групп и классов горизонта Д1, Д0 и установленных явлений в процессе фильтрации различных типов вод сформулированы основные требования к закачиваемой воде.