Смекни!
smekni.com

Расчет и проектирование привода электросаней (стр. 7 из 7)

Момент инерции винта находим из выражения J=mr2 =5.247 кг м2

Радиус инерции определяем через наибольший радиус лопасти r=εR=0.35*0.9=0.315 м.

Проектировочный расчет вала

Предварительно определяем диаметр вала из условия его работы на кручение

где Ткр – вращающий момент Нм

τКР – условное допускаемое напряжение при кручении МПа

Принимаем диаметр равный 30мм

10.7 Проверочный расчет

Для расчетной схемы определяем реакции опор

М - 0,1RB+ MГ + 0,185G = 0;

RB = 6550 H;

0,1 RА + М - MГ – 0,085G = 0;

RА = 6020 H.

Определяем суммарный изгибающие моменты

Определяем статическую прочность вала в опасном сечении


Определяем коэффициенты запасов усталостной прочности в опасных сечениях

где Sσ – коэффициент запаса по нормальным напряжениям

Sτ – коэффициент запаса по касательным напряжениям

Расчет подшипников

Для принятой расчетной схемы определяем реакции в опорах.

Изгибающие моменты: а) Момент от муфты 209Нм; б) Гироскопический момент 347Нм; осевая реакция в опоре F = 132.48H.

Вертикальная составляющая в опорах

0.1RB – MГ – М – 0,185F = 0;

RB = 5805 H;

М – 0,1RA – MГ – 0,085F = 0;

RA = 5447 Н.

Горизонтальная составляющая в опорах

0.1RB – MГ – М – 0,185G = 0;

RB = 6540 H;

М – 0,1RA – MГ – 0,085G = 0;

RA = 6010 Н.

Суммарные реакции в опрах

Опора А:

Опора В:

Для наиболее нагруженной опоры рассчитываем эквивалентную нагрузку F.

По рекомендациям принимаем V=1, Кб=1, Кт=1.

Эквивалентную нагрузку вычисляем по формуле:

Определяем расчетный ресурс в миллионах оборотов

Определяем динамическую грузоподъемность подшипника

По справочным данным принимаем роликовый конический однорядный с упорным бортом на наружном кольце подшипник №67214 ГОСТ3169-71.

10.9 Проверяем подшипник на быстроходность


ЗАКЛЮЧЕНИЕ

В данной курсовой работе в соответствии с полученным заданием спроектирован двухступенчатый цилиндрический редуктор как составная часть привода транспортера для транспортирования штучныхгрузов.

В результате проектировочных расчетов получены конкретные параметры деталей механизма, участвующих в передаче движения, таких как: колесо, шестерня, тихоходный, промежуточный и быстроходный валы, крышки редуктора и т.д.

Детали корпуса изделия, крепления и другие элементы разработаны конструктивно. Произведен подбор стандартных деталей крепежа.


СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Киркач Н.Ф., Баласанян Р.А. Расчет и проектирование деталей машин, Х.: Основа, 1991, 276 с.

2. Анурьев В.И. «Справочник конструктора-машиностроителя» (3 тома). М., 1980.

3. Алферов В.В. “Визначення геометричних параметрiв та якiсних показникiв змiщення евольвентного зачеплення”, ХАI, 1999 р.

4.Бейзедьман Р.Д., Цыпкин Б.В., Перель Л.Я. ”Подшипники качения” (справочник), М. “Машиностроение”,1975, 574 с.

5. Иванов М.Н. Детали машин. Учебн. - М.: Высшая школа, 1984, 336 с.

6. Чернин И.М., Кузьмин А.В., Ицкович Г.М. «Расчеты деталей машин» (справочное пособие). Издание 2-е, переработанное и дополненное. – Минск: «Высшая школа», 1978 – 472 с.

7. Чернавский С.А., Снесарев Г.А., Боков К.Н. «Проектирование механических передач». Учебно-справочное пособие по курсовому проектированию механических передач. Издание пятое, переработанное и дополненное. – Москва: «Машиностроение», 1984 – 560 с.