что удовлетворяет требованию, и для которого
см2
Двутавр. По ГОСТ 8239-89 выбираем двутавр № 55 для которого
=2035 см3, A3=118 см2.Три швеллера. По ГОСТ 8240-89 выбираем три швеллера № 36, для которых
=3·601=1803 см3, A4=3·53,4=160,2 см2.Неравнобокие уголки. Они находятся подбором, так как в сортаменте не даны значения момента сопротивления. Использую формулу
Сделав несколько попыток, выбираем восемь уголков 250´160´16 для которых
см3
A5=8·63б6=508,8 см2
Оценка экономичности подобранных сечений
Масса балки определяется как произведение плотности материала на ее объем m=rAl , т.е. расход материала при прочих равных условиях зависит только от площади поперечного сечения А. Сравнивая массы балок
m1 : m2 : m3 : m4 : m5 = A1 : A2 : A3 : A4 : A5 = 1 : 0,68 : 0,2 : 0,28 : 0,89 заключаем, что самым неэкономичным является круглое сечение. При замене круга другими формами (прямоугольник, двутавр, три швеллера, восемь уголков) достигается экономия, равная соответственно 32%, 80%, 72% и 11%.
Исследование напряжений в опорном сечении для балки двутаврового профиля № 55 (рис. 7,а), параметры которой по ГОСТ 8239-89 равны:
h=55 см, b=18 см, d=1,1 см, t=1,65 см, Ix=55962 см4, Sx=1181 см3
Внутренние силовые факторы в опорном сечении А:
QA = 4qa=4·15·1,2 = 72 кН
MA = – 14qa2 = – 14·15·103·1,22 = – 302,4 кН·м
Эпюра σ. Нормальные напряжения в поперечном сечении изменяются по линейному закону
Вычисляем напряжения в крайних точках и строим эпюру σ (рис. 7,б)
Эпюра τ. Она строится по формуле Журавского
Находим значения τ в 4 характерных точках по высоте сечения (необходимые вычисления представлены в табл. 3) и строим касательные напряжения (рис. 7,в)
Таблица 3 – Вычисления касательные напряжений в характерных точках
№ точек | bi,мм | , см3 | , МПа | |||
1,1΄ | 18 | 0 | 0 | 0 | 0 | МПа |
2,2΄ | 18 | 792 | 44 | 0,04 | 0,6 | |
3,3΄ | 1,1 | 792 | 720 | 0,7 | 9,3 | |
4 | 1,1 | 1181 | 1073,6 | 1 | 14 |
Определение главных напряжений в точке К (yк /h= – 0,1):
– напряжение в поперечном сечении
МПа
МПа
– величины главных напряжений
σ1 = 35,25 МПа
σ3 = – 5,25 МПа
– ориентация главных площадок
21º
Экстремальные касательные напряжения равны по величине
МПаи действуют на площадках, равнонаклоненных к осям 1 и 3.
3.2 Выбор материала
Согласно схеме нагружения (рис. 9,а), подобрать сечение балки (рис. 10), изготовленной из материала, неодинаково работающего на растяжение и сжатие.
Принять: М = 4qa2 кН·м, F = 2qaкН, q= 15 кН/м, а = 1,2 м,
[σр] = 40 МПа, [σс] = 70 МПа
Решение
1. Определение опорных реакций и построение эпюр Qx и Mx.
ΣmB=0
RA4a - 2qaa - 4qa2- q3a3,5a = 0
RA = 4,125qa
ΣYi=0
RA - 2qa - q3a+ RB = 0
RB =0,875qa
Эпюра Qy. Строится по формуле
Q = Q0 ± qz
В данном случае берем знак «минус», так как погонная нагрузка направлена вниз. Находим значения поперечной силы в характерных точках и строим ее эпюру (рис. 9,б)
QС = 0
QCA = QC–qa= – qa
QA = QCA + RA = – qa + 4,125qa = 3,125qa
QAF = QA – 2qa = 3,125qa – 2qa = 1,125qa
QFD = QAF= 1,125qa
QD = QFD – 2qa = 1,125qa – 2qa = – 0,875qa
QDB = QD= – 0,875qa
QB = QDB + RB = – 0,875qa + 0,875qa = 0
Эпюра Mx. Строится по формуле
Mx = M0 + Q0Z – 0,5qz2
Изгибающий момент изменяется по квадратичному закону на участке CA и AF (q=const) и по линейному закону – на участках FD и DB (q=0). Вычисляем значения в характерных точках и строим эпюру (рис. 9,в)
MС = –4qa2
MA = MС –
qa2 = – 4qa2 – 0,5 = – 4,5qa2MF = MA +
qa2 = – 10qa2+ 4qa2 = – 6qa2MD = MF + 1,125qa2 = – 0,25qa2+ 1,125qa2 = 0,875qa2
MB = MD – 0,875qa2 = 0,875qa2+ 0,875qa2 = 0
Расчетный изгибающий момент равен
Mрас = |MA| = 4,5qa2 = 4,5·15·103·1,22 = 97,2 кН·м
Геометрические характеристики сечения
Положение центра тяжести.
Необходимые вычисления представлены в табл. 4.
Таблица 4 – Положение центра тяжести
№ п/п | υi | Ai | υi Ai |
1 | 2t | 8t2 | 16t3 |
2 | t | – 3t2 | – 3t3 |
Σ | 5t2 | 13t3 |
Момент инерции относительно главной центральной оси.
Предварительно определим моменты для элементов сечения относительно собственных центральных осей, а последующие вычисления выполним в табличной форме (табл. 5)
Таблица 5 – Момент инерции
№ эл-в | yi | Ai | yi=υi – υc | ||
1 | –0,6t | 8t2 | 10,7t4 | 2,88t4 | |
2 | –1,6t | –3t2 | –1,5t4 | –7,68t4 | |
Σ | 9,2t4 | –4,8t4 | |||
4,4t4 |
Момент сопротивления
Поскольку материал хуже работает на растяжение, то с точки зрения наиболее эффективного его использования профиль следует расположить так, чтобы более тонкий слой толщиной h2 испытывал растяжение в опасном сечении А. В этом сечении растяжение возникает в верхней части балки, поэтому профиль следует расположить полостью вниз.
Подбор сечения балки.
Находим необходимые размеры:
– из условия прочности на растяжение
мм
– из условия прочности на сжатие
мм
Принимаем большее значение t= max { tр , tс} = 113 мм.
В опорном сечение D изгибающий момент меньше расчетного. Поэтому здесь нужно проверить прочность балки на растяжение. Находим
МПаТ.к. перенапряжение составляет 15,4%, что недопустимо, принимаем t =200 мм
МПаВ этом случае перенапряжение составляет 2,78%, что допустимо, т.к. 2,78% < 5%, следовательно прочность балки при найденных размерах будет обеспечена.
Создание стержня определенной жесткости
Подобрать сечение балки (рис. 11,а), удовлетворяющее условиям прочности и жесткости. Допускаемое напряжение материала определяется исходя из диаграммы растяжения материала (задача 1.3). Исследование перемещения выполнить двумя способами:
– пользуясь методом начальных параметров, определить прогибы и углы поворота сечений балки с координатами z = 0, a, 2a, 3a, 4a, 5a; изобразить изогнутую ось балки и показать на ней найденные перемещения;