Определим характеристики прочности.
Предельная нагрузка Fт определяется следующим образом. Из точки О откладываем отрезок ОЕ, равный заданной остаточной деформации 0,2%, т.е. Dl0,2 = 0,002·l0 = 0,002·160 = 0,32 мм
Затем из точки Е проводим прямую, параллельную начальному прямому участку ОА. Ордината точки пересечения этой прямой с диаграммой как раз и дает искомое значение Fт=70 кН.
Наибольшая выдерживаемая образцом нагрузка, взятая непосредственно с диаграммы, равна Fmax = Fпч = 118 кН.
Определим характеристики пластичности.
Из точки D, соответствующей разрушению образца, проводим пунктирную прямую DL, параллельную начальному прямому ОА. Отрезок OL дает значение абсолютного удлинения при разрыве Dl=33 мм. Длина образца после разрыва l1= l0 + Dl=160 + 33 = 193 мм
Таблица 1 – Механические характеристики стали 30 (улучшение)
Характеристики прочности, МПа | ||
Предел текучести | 348 | |
Предел прочности | 587 | |
Характеристики пластичности, % | ||
Относительное остаточное удлинение | 20 | |
Относительное остаточное сужение | 50 |
Выбор коэффициента запаса прочности и определение допускаемого напряжения
Условие прочности по методу допускаемых напряжений имеет вид
σmax£ [σ]
[σ] =
где σпред – предельное напряжение, т.к. материал пластичный (δ>5%), то σпред = σт =348 МПа;
[n] – нормативный коэффициент запаса прочности, который определяется по формуле
[n] = [n1]·[n2]·[n3]
где [n1] – коэффициент, учитывающий неточность в определение нагрузок и напряжений, [n1] =1;
[n3] – коэффициент условий работы, учитывающий степень ответственности детали, [n3] =1…1,5»1;
[n2] – коэффициент, учитывающий неоднородность материала, повышенную его чувствительность к недостаткам механической сборки, выберается из табл. 2
Таблица 2 – Коэффициент неоднородности материала
σт / σпч | 0,45…0,55 | 0,55…0,70 | 0,70…0,9 |
[n] | 1,2…1,5 | 1,4…1,8 | 1,7…2,2 |
Так как σт / σпч=0,593, то коэффициент неоднородности материала выбираем из второго столбца по формуле линейной интерполяции, для определения среднего значения в промежутке
По формуле (4) определяем коэффициент запаса прочности
[n] = 1·1,59·1=1,59
По формуле (3) находим величину допускаемого напряжения
[σ] =
МПаПосле округления до ближайшего целого числа, кратного 10, окончательно получим [σ] =220 МПа. Это значение используется при расчете балки на прочность (задача 3.1).
Оценка параметров закручивания
Для заданного трансмиссионного вала (рис. 4,а) требуется:
1. Построить эпюру крутящего момента MК и определить требуемый диаметр вала из расчетов на прочность и жесткость.
2. Установить наиболее рациональное расположение шкивов на валу и определить диаметр вала в этом случае. Оценить в процентах достигаемую в этом случае экономию материала по сравнению с заданным расположением шкивов.
3. Построить эпюры углов закручивания для обоих вариантов, считая неподвижным левый конец вала.
Принять: М=3 кН·м, а=0,2 м, G =80 МПа, [τ]=50 МПа, [θ]=8 мрад/м
Решение
1. Определение диаметра вала.
Строим эпюру МК (рис. 4,б). Как видим, при заданном расположение шкивов наибольший крутящий момент равен МКmax =15 кН·м. Меняя местами шкивы, ищем такой вариант нагружения, при котором расчетный крутящий момент получается наименьшим. Это и будет рациональный вариант расположения шкивов. Схема нагружения рационального расположения шкивов и соответствующая ей эпюра МК представлены на рис. 5, а и б. В этом случае расчетный момент МКmax =12 кН·м, меньше чем в первом варианте.
Из условий прочности и жесткости определяем искомый диаметр:
1 вариант:
мм ммСледовательно, d1 = max {dпч,dж} = 124 мм. Принимаем по ГОСТ 6636-86 d1 = 130 мм. Жесткость поперечного сечения данного вала равна
МН·м2
2 вариант:
мм
мм
Следовательно, d2 = max {dпч,dж} = 118 мм. Принимаем по ГОСТ 6636-86 d2 = 120 мм. Жесткость поперечного сечения данного вала равна
МН·м2
Требуемый диаметр вала по второму варианту получается меньше, чем по первому. Тем самым переход от заданного расположения шкивов к рациональному приводит к экономии материала, равной
Построение эпюры угла закручивания φ.
Угол поворота определяется по формуле
где φ0 – угол поворота в начале участка;
ωМ – площадь эпюры крутящего момента от начала участка до рассматриваемого сечения.
Так как крутящий момент остается постоянным в пределах каждого участка, то согласно первой формуле угол φ меняется по линейному закону. Вычисляем углы поворота на границах участков и строим эпюры (рис.4,в и рис.5,в)
1 вариант:
φ0 = φА = 0
мрад
мрад
мрад
2 вариант:
φ0 = φВ = 0
мрад
мрад
мрад
3 Процедура создания стержней
3.1 Создание стальной балки
Спроектировать стальную балку (рис. 6,а) в 5 вариантах поперечного сечения: круглого, прямоугольного (h/b=2), двутаврового, из швеллеров и уголков, приняв допускаемое напряжение [σ] = 160 МПа. Оценить экономичность всех пяти сечений и начертить их в одном масштабе. Для балки двутаврового профиля построить эпюры нормальных и касательных напряжений, а также исследовать аналитически и графически напряженное состояние в точке К опорного сечения.
Принять: М = 4qa2 кН·м, F = 2qa кН, q=15 кН/м, а = 1,2 м, yк /h= – 0,1
Решение
1. Определение опорных реакций и построение эпюр Qy и Mx.
ΣYi=0
RA - 2qa + q2a = 0
RA =4qa
ΣmA=0
MA - 4qa2 + 2qa3a-q2a2a = 0
MA = 4qa2 + 6qa2 + 4qa2 = 14qa2
ЭпюраQy. Строится по формуле
Q = Q0 ± qz
В данном случае следует взять знак «минус», так как погонная нагрузка направлена вниз. Поперечная сила постоянна на участке АВ (q=0) и изображается наклонной прямой на участке MF (q=const). Вычисляем значения Qyв характерных точках и строим ее эпюру (рис. 6,б)
QA=RA=4qa
QAB=QA=4qa
QBC=QAB – q2a=4qa – 2qa=2qa
QC=QBC – 2qa=2qa – 2qa=0
Эпюра Mx. Строится по формуле
Mx = M0 + Q0Z – 0,5qz2
Изгибающий момент изменяется по квадратичному закону на участке MF (q=const) и по линейному закону – на участке АВ (q=0). Вычисляем значения в характерных точках и строим эпюру (рис. 6,в)
MA = – 14qa2
MAВ = MA + 4qa2 = – 14qa2+ 4qa2 = – 10qa2
MВ = MAВ + 4qa2 = – 10qa2+ 4qa2 = – 6qa2
MВС = MВ + 6qa2 = – 6qa2+ 6qa2 = 0
Расчетный изгибающий момент равен
Mрас = |MA| = 14qa2 = – 14·15·103·1,2 = 302,4 кН·м
Подбор сечений.
Из условий прочности по нормальным напряжениям определяем требуемый момент сопротивления поперечного сечения по кторому подбираем конкретные сечения
см3
Круг:
см
Принимаем по ГОСТ 6636-86 нормализованное значение d0=270 мм, тогда
см3
Прямоугольник (h/b=2):
см
Ближайшее меньшее стандартное значение равно b0=140 мм. При этом балка будет работать с перенапряжением, равным