Смекни!
smekni.com

Разработка технологического процесса изготовления шестерни ведомой заднего моста (стр. 2 из 15)

Тшт.ср=16 мин;

где, ФЭФ = 4032 ч – эффективный годовой фонд рабочего времени при 2-х сменной работе;

N = 15000 дет/год – объем выпуска деталей;

tв=16,128 мин

Тогда коэффициент серийности:

Кс=1,008

Коэффициент серийности:

для массового производства КС<1;

для серийного производства 1< КС <10.

Из значений КС видим, что тип производства – серийный.

1.5 Анализ базового варианта технологического процесса

Поскольку материал шестерня ведомая заднего моста – сталь 19ХГН, то заготовку можно получить только методами обработки металлов давлением. Заготовку также можно получать из проката ввиду мелкосерийного производства. Из всех видов ОМД наиболее предпочтительными в условиях серийного производства являются горячая штамповка на горизонтально-ковочных машинах (выбор метода получения заготовки рассмотрен в следующем разделе).

В условиях серийного производства необходимо придерживаться следующего: максимальная концентрация операций на одном оборудовании, использование унифицированного инструмента и оснастки.

Базирование выполнено правильно, соответствует принципам постоянства и единства баз.


2. Выбор и проектирование заготовки

2.1 Выбор вида и методов получения заготовки

Легированная высокопрочная сталь 19ХГН в исходном состоянии поставляется в виде поковок на горизонтально-ковочных машинах (ГКМ). С учетом имеющегося на базовом предприятии (ВАЗ) технологического оборудования для получения исходной заготовки данной ведущей шестерни можно использовать следующие методы: штамповка на прессах в закрытых штампах, на ГКМ, методом холодного выдавливания. Из литературы [1] видно, что заготовка на ГКМ имеет значительно большие припуски нежели заготовки, получаемые методами штамповки в закрытых штампах и выдавливанием. Окончательный выбор метода определим экономическим расчетом по методике [2].

Таблица 2.1. Определение припусков, допусков и массы заготовок

Размеры Припуски, мм Допуски, мм Масса, кг
ГКМ Выдавл. ГКМ Выдавл. ГКМ Выдавл.
19 1,4 1,3 +1,1 -0,5 +0,9 -0,5 2,55 2,3
21 1,4 1,3
25,44 1,4 1,3
Æ165 1,3 1,2 +0,8 -0,4 +0,7 -0,3
Æ156 1,3 1,3 +0,8 -0,4
Æ96 1,2 1,1 -0,7 -1,3 -0,7 -0,3

Цены на материал, отходы механическую обработку взяты по базовому предприятию с переводом в современные рубли.

Стоимость заготовок, получаемых методами, взятыми для сравнения, штамповки на ГКМ и выдавливанием:


Sзаг= (Сi*Q*Кт* Кс* Кв* Км* Кп) – (Q-q)*Sотх/1000, (2.1)

где Сi – базовая стоимость 1 т заготовок,

Q – масса заготовки, кг,

Кт* Кс* Кв* Км* Кп – коэффициенты зависящие от класса точности, группы сложности, массы, марки материала и объема производства заготовок,

q – масса готовой детали; q=1,843 кг по чертежу графической части.

Sотх – цена 1 т отходов стали 19ХГН, Sотх=255 р.

Все показатели формулы (2.1) для обоих методов сводим в табл. 2.2

Таблица 2.2. Определение показателей к расчету стоимости заготовки

Метод получения заготовки Сi, руб. Q, кг М С Т Кт Кс Кв Км Кп
На ГКМ 2700 1,85 1 2 3 1,0 0,88 1,15 1,21 0,8
Выдавливанием 3360 1,78 1 2 2 1,0 0,88 1,15 1,21 0,8

SзагГКМ=(2700/1000*2,45*1,0*0,88*1,15*1,21*0,8) – (2,45–1,84)*255/1000=4,73 руб.

Sзагвыдавл=(3360/1000*2,3*1,0*0,88*1,15*1,21*0,8) – (2,3–1,84)*255/1000=5,71 руб.

Из расчетов видно, что заготовка получаемая методом выдавливания дороже, чем заготовка ГКМ, кроме того, можно добавить, что данную шестерню полностью невозможно получить выдавливанием из-за сложности получения головки под зубья. Таким образом, можно принять решение о получении заготовки ведущей шестерни на ГКМ, в связи с повышением точности получения заготовки меняется исходный индекс заготовки, значит уменьшаются припуски. Исходя из выше изложенного, снижения припусков:

SзагГКМбаз=(2700/1000*2,0*0,98*0,88*1,15*1,21*0,8) – (2,55–1,84)*255/1000=4,98 руб.


Эгод= (SбазГКМ-SпроектГКМ)*Nг, (2.2)

где Nг – годовая программа выпуска деталей, Nг=15000 шт.

Эгод=(4,98–4,73)*15000=3750 руб.

Вывод: в качестве метода получения заготовки принимаем штамповку на ГКМ с условной годовой экономией в 3750 руб.

2.2 Проектирование заготовки

Окончательно разработку рабочего чертежа заготовки можно провести только после расчета размерного анализа, выявляющего припуски, операционные размеры и размеры заготовки.

На данном этапе назначаем технические требования на заготовку по [1], заносим их на чертеж графической части дипломного проекта.

В качестве черновых технологических баз, используемых при первом установе заготовки, следует выбрать, соблюдая принцип единства баз, пов. 3, 3 тем самым обеспечивая точность диаметральных размеров и взаимного расположения поверхностей.

Для обеспечения точности осевых размеров, целесообразно в качестве черновой базы использовать пересечение поверхностей 3 и 9 (рис. 1.2), совмещая измерительную и технологическую базы.


3. Разработка технологического маршрута и схем базирования

Цель – назначение технологических баз на различных этапах обработки заготовки на основе оптимизации теоретических схем базирования.

При разработке схем базирования будем опираться на следующие принципы: принцип единства баз, т.е. совмещение измерительной и технологической баз и принцип постоянства баз, т.е. использование одной и той же технологической базы на различных операциях ТП.

На операции 010 токарной, соблюдая принцип единства баз, в качестве технологической базы выбраны пов. 3 и 9 и торец 20, здесь создается естественная база – внутренний диаметр, которая будет использована как база почти на всех операциях, что обеспечивает принцип постоянства баз.

На операции 020 токарной, шлифовальной и на окончательной шлифовальной в целях упрощения конструкции приспособления за технологическую базу в осевом направлении принимаем пов. 5.

На операции, где идет обработка зубьев, для достижения требуемой точности и жесткости необходимо использовать ОКБ – комбинацию пов. 5 и 1. Такая схема обеспечивает единство баз при выполнении требования радиального биения зубчатого венца и необходимую точность зубьев.

Разработка технологического маршрута заключается в формировании операций, выборе оборудования. Проанализировав базовый вариант, принимаем, что оборудование не соответствует необходимым требованиям, так как используется в массовом производстве и в проектном варианте используем оборудование преимущественно универсальное (см. табл. 3.1.).

Таблица 3.1. Используемое оборудование

№операции Используемое оборудование
10 Токарный станок с ЧПУ 1716ПФ4
20 Токарный станок с ЧПУ 1716ПФ4
30 Обрабатывающий центр Deckel Maho DMC 50V
40 Моечная машина
50 Контрольный стенд
60 Зубообрабатывающий станок с ЧПУ «Klingelnberg» G-20 (CBN)
70 Контрольный стенд
80 Закалочная печь
90 Шлифовальный станок с ЧПУ фирмы «Schaudt» ZX-1
100 Притирочно контрольно-обкатной станок

Выбор СТО.

Выбор СТО подробно изложен в Маршрутной карте, в приложении.

4. Размерный анализ техпроцесса

4.1 Расчет операционных размеров и максимальных припусков

В процессе проведения размерного анализа мы решаем одновременно несколько задач.

1. Определяем операционные размеры и технические требования на все операции техпроцесса.

2. Определяем размеры исходной заготовки с минимальными расчетными припусками.

3. Проверяем техпроцесс по критерию обеспечения заданной точности.

Размерная схема представлена на чертеже.

Расчет операционных размеров ведется в следующем порядке:

1. Выявляем замыкающие звенья технологических размерных цепей

2. Выявляем размерные цепи, записываем их уравнения

3. Решаем уравнения размерных цепей

Определяем величины минимальных операционных припусков по [3]:

где Zmini – минимальный i-ый припуск, мм;

Rzi-1 - высота неровностей на предыдущей операции, мкм;

Тi-1 - дефектный слой на предыдущей операции, мкм;

Рассчитываем максимальные значения операционных припусков по методу максимума-минимума:

где wZi – колебание припуска Zi


где wBK – колебания (допуски) составляющих звеньев

Определяем значения операционных размеров из уравнений размерных цепей.

Допуски операционных размеров определяем из маршрутной технологии или по таблицам статистической точности.

Решаются уравнения.

Расчет ведется от детали.