Смекни!
smekni.com

Испытание материалов на растяжение и сжатие (стр. 2 из 2)

Интересен механизм разрушения образца из низкоуглеродистой стали. Образец разрушается, как правило, с образованием «чашечки» на одной его части и «кону­са» — на другой. Этот излом называют чашечным или изломом «чашечка — конус».

Помимо указанных характеристик прочности определяют характеристики пластичности.

Относительное удлинение после разрыва δ(%) — это отношение приращения расчетной длины образца после разрыва к ее первоначальному значению, вычисляемое по формуле:

δ = ((lK-l0)/l0)100%

Заметим, что относительное удлинение после разрыва зависит от отношения расчетной длины образца к его диаметру. С увеличением этого отношения значение δ уменьшается, так как зона шейки (зона местной пластической деформации) у длинных образцов занимает от­носительно меньше места, чем в коротких образцах.

Другой характеристикой пластичности является относительное сужение после разрыва ψ (%), представля­ющее собой отношение уменьшения площади попереч­ного сечения образца в месте разрыва к начальной пло­щади поперечного сечения образца:

ψ=((A0-AK)/A0)100%

Иногда при вычислении значения ψ для цилиндрических образцов пользуются формулой:

ψ=(((d0)2-dK)2)/(d0)2)100%

Для стали марки Ст3 характеристики пластичности следующие: δ = 25…27% (при испытании коротких образ­цов); ψ=60…70%.

Если образец после нагрузки, соответствующей пре­делу текучести (рис. 3), разгрузить, то процесс разгруз­ки будет изображен линией МО1, почти параллельной первоначальному упругому участку диаграммы.

Рис. 3

Удлине­ние, полученное образцом до начала разгружения, при разгрузке полностью не исчезает. Оно становится меньше на удлинение Δlуп упругой части (отрезок О1О2). Остаточ­ное удлинение Δlост (отрезок ОO1) называется также пла­стическим удлинением. Следовательно, за пределом уп­ругости полное удлинение образца состоит из двух ча­стей — упругой и пластической:

Δl = Δlуп+ Δlост,

а до предела упругости — только из чисто упругой: Δlост = 0.

Если после разгрузки образца его тут же снова нагру­зить, то процесс повторного нагружения изобразится ли­нией О1М, которая почти совпадает с линией МО1, описы­вающей процесс нагрузки. При этом линия нагрузки проходит через ту же точку диаграммы, с которой начал­ся процесс разгрузки. Обе линии (разгрузки и нагрузки) образуют петлю — петлю гистерезиса. После полно­го цикла образец возвращается к своему первоначаль­ному состоянию; это явление носит название упругого гистерезиса. Площадь петли гистерезиса соответствует потерям механической энергии за один цикл, которые весьма малы. Эти потери вызываются так называемым внутренним (молекулярным) трением. Силы трения сове­ршают необратимую работу, что приводит к диссипации (рассеянию) механической энергии в виде тепловой энер­гии.

При дальнейшем нагружении (после точки М) кривая продолжается так, как будто не было промежуточной разгрузки. Следовательно, у образца после предварительного деформирования улучшились упругие свойства.

Явление повышения упругих свойств материала в результате предварительного пластического деформирова­ния называется наклепом.

Наклеп наблюдается не у всех материалов и даже не у всех металлов, таких, например, как свинец, олово и др. Оно широко используется в технике (цепи и канаты подъем­ных машин, некоторые виды арматуры железобетонных конструкций, цилиндры гидравлических прессов, турбин­ные диски и другие элементы машин и механизмов).

Условная и истинная диаграммы.

Диаграмма растяже­ния F=f(Δl) (рис. 2) характеризует свойства образ­ца, так как зависит от его размеров. Для оценки механи­ческих свойств материала диаграмму растяжения пере­страивают в координатах «напряжение—деформация»; все ординаты делят на первоначальную площадь попе­речного сечения А0, а все абсциссы — на первоначальную длину рабочей части l0. В результате получаем диаграмму напряжений σ =f(ε) (рис. 4), которая имеет тот же вид, что и диаграмма F=f(Δl), так как А0и l0постоянны.

Рис. 4

Эта диаграмма является условной, поскольку при ее постро­ении не учитывается изменение значений А0и l0в процессе испытания. Поэтому определенные ранее пределы пропорциональности и текучести и временное сопротивление являются условными. Истинные же напряжения в каждый момент нагружения будут больше условных.

Условные диаграммы напря­жении используются на практике для определения меха­нических характеристик материалов, а также для опреде­ления модуля упругости Е: E=tg α = σ/ε, т. е. значение модуля упругости есть тан­генс угла наклона прямолинейного участка диаграммы к оси абсцисс.

Диаграмма низколегированной стали.

Диаграмма рас­тяжения низколегированной стали изображена на рис. 5. Аналогичную диаграмму имеют и другие пластич­ные материалы, например красная медь, сплавы алюми­ния.

Рис. 5

В начале диаграммы между нагрузкой и деформацией тоже соблюдается прямо пропорциональная зависимость (закон Гука). Точка, где эта зависимость нарушается, соответствует пределу пропорциональности. После точки А прямолинейный участок диаграммы плавно переходит в криволинейный — зону пластических деформаций.

На диаграмме растяжения нет площадки текучести. Поэтому вместо физического предела текучести определяют условный предел текучести σ0,2(точка D на рис. 5) — напряжение, при котором остаточное удлинение достигает 0,2% от рабочей длины образца:

σ0,2=F0.2/A0

Для определения нагрузки F0.2вычисляется значение заданного остаточного удлинения l0.2 исходя из рабочей длины образца. Отрезок, соответствующий остаточной деформации l0.2, откладываем вправо от точки О (на рис. 5 — отрезок ON). Из точки N проводится прямая, параллельная прямой ОА, до пересечения с диаграммой растяжения. Ордината точки пересечения D равна нагруз­ке F0.2.

В криволинейной части диаграммы нагрузки увеличиваются вместе с увеличением деформаций, которые про­исходят по всей длине образца. При приближении к мак­симальной нагрузке на образце появляется местное суже­ние — шейка. На диаграмме этому состоянию соответ­ствует точка Е.

После точки Е нагрузка начинает уменьшаться, дефо­рмация образца концентрируется в основном в области шейки. Поперечное сечение шейки уменьшается, и при нагрузке Fkобразец разрушается — точка К.

Следует отметить, что участок диаграммы ЕК у низкоуглеродистой стали длиннее, чем у низколегированной. Это указывает на то, что низколегированная сталь об­ладает меньшей пластичностью, поэтому шейка у нее является менее выраженной. Механические же характери­стики прочности выше у низколегированной, чем у низкоуглеродистой стали.

Механизм образования деформации.

Реальные технические металлы и их сплавы состоят из большого числа кристаллических зерен, или кристаллитов, ориентирован­ных произвольным образом. Так, уменьшение размеров зерен приводит к увеличению про­чности на разрыв, а также пластичности и вязкости.

Внутри кристалла находятся атомы металла, располо­женные в определенном порядке. Они образуют более или менее правильную трехмерную кристаллическую решетку.

Между атомами дей­ствуют либо силы притяжения, либо силы отталкивания. Сила взаимодействия между двумя соседними атомами складывается из этих сил. На рис. 6 показана схема распределения сил отталкивания (кривая 1) и притяжения (кривая 2), а также результирующей силы (кривая 3).

Рис. 6

При расположении атомов на расстоянии r0 сила взаимодействия между ними равна нулю и атомы находятся в равновесном положении.

Любая попытка не­значительного перемещения атомов из равновесного положения приводит к возникновению сил, стремящихся вернуть их в прежнее состояние.

При переме­щении атома в новое положение каждый предыдущий атом занимает место последу­ющего, в итоге все атомы перемещаются из своих прежних положений в эквивалентные узлы кристаллической решетки на одно межатомное расстояние. В результате такого необратимого смешения атомов начинается пластическое деформирование.

Пе­ренос вещества, возникающий благодаря пластичности кристаллов, происходит с помощью дислокации, т. е. не­совершенств, дефектов кристаллической решетки в ме­стах, где имеются атомы или группы атомов, смещенные из положения устойчивого равновесия.

Таким образом, пластическая деформация являете результатом необратимых смещений атомов (сдвигов), обусловленных движением дислокаций. Движение дислокаций обычно вызывает макроскопическую пластическую деформацию материала и сопровождается динамическими явлениями: выделением теплоты в результате колебаний атомов около вновь приобретенного положения равновесия и возникновением акустических эффектов.