По заданию проекта необходимо спроектировать и электрооборудование и электропривод для механизма подъема.
Рисунок 1.2 - Кинематическая схема механизма подъема главного крюка: 1 - двигатель; 2 - муфта; 3 - тормоз; 4 - редук -тор; 5 - барабан; 6 - полиспаст; 7 - неподвижный блок полис - пасты.
Типичная кинематическая схема механизма подъема крана приведена на рисунке 1.2
Грузоподъемные машины изготовляют для различных условий использования по степени загрузки, времени работы, интенсивности ведения операций, степени ответственности грузоподъемных операций и климатических факторов эксплуатации. Эти условия обеспечиваются основными параметрами грузоподъемных машин. К основным параметрам механизма подъёма относятся: грузоподъемность, скорость подъема крюка, режим работы, высота подъема грузозахватного устройства.
Номинальная грузоподъемность - масса номинального груза на крюке или захватном устройстве, поднимаемого грузоподъемной машиной.
Скорость подъема крюка выбирают в зависимости от требований технологического процесса, в котором участвует данная грузоподъемная машина, характера работы, типа машины и ее производительности.
Режим работы грузоподъемных машин цикличен. Цикл состоит из перемещения груза по заданной траектории и возврата в исходное положение для нового цикла.
Все многообразие грузоподъемных кранов охвачено восемью режимными группами 1К-8К. Классификация механизмов по группам режимов работы осуществляется по параметрам суммарного времени работы механизмов за срок службы и степени усредненного нагружения крана.
Для данного мостового крана рекомендуемые режимные группы:
5К- группа режима работы крана;
4М- группа режима работы механизма подъема.
2. Условия работы и общая техническая характеристика электрооборудования механизма подъема мостового крана.
Повышенная опасность работ при транспортировке поднятых грузов требует при проектировании и эксплуатации соблюдение обязательных правил по устройству и эксплуатации подъемно-транспортных машин. На механизмах подъема и передвижения правилами по устройству и эксплуатации предусмотрена установка ограничителей хода, которые воздействуют на электрическую схему управления. Конечные выключатели механизма подъема ограничивают ход грузозахватывающего приспособления вверх, а выключатели механизмов передвижения моста и тележки ограничивают ход механизмов в обе стороны. Предусматривается также установка конечных выключателей, предотвращающих наезд механизмов в случае работы двух и более кранов на одном мосту. Исключение составляют установки со скоростью движения до 30 м/мин. Крановые механизмы должны быть снабжены тормозами закрытого типа. Действующими при снятии напряжения.
На крановых установках допускается применять рабочее напряжение до500 В, поэтому крановые механизмы снабжают электрооборудованием на напряжения 220, 380, 500 В переменного тока и 220, 440 В постоянного тока. В схеме управления предусматривают максимальную защиту, отключающую двигатель при перегрузке и коротком замыкании. Нулевая защита исключает самозапуск двигателей при подаче напряжения после перерыва в электроснабжении. Для безопасного обслуживания электрооборудования, находящегося на ферме моста, устанавливают, блокировочные контакты на люке и двери кабины. При открывании люка или двери напряжение с электрооборудования снимается.
При работе крана происходит постоянное чередование направления движения крана, тележки и крюка. Так, работой механизма подъема состоит из процессов подъема и опускания груза и процессов передвижения пустого крюка. Для увеличения производительности крана используют совмещение операций: Время пауз, в течение которого двигатель не включен и механизм не работает, используется для навешивания груза на крюк и освобождение крюка, для подготовки к следующему процессу работы механизма. Каждый процесс движения может быть разделен на периоды неустановившегося движения (разгон, замедление) и период движения с установившейся скоростью.
Мостовой кран установлен в литейном цеху металлургического производства, где наблюдается выделение пыли, поэтому электродвигатель и все электрооборудование мостового крана требует защиты общепромышленного исполнения не ниже IP 53 - защита электрооборудования от попадания пыли, а также полная защита обслуживающего персонала от соприкосновения с токоведущими и вращающимися частями, а также защита электрооборудования от капель воды падающих под углом 600 к вертикали.
Краны литейных цехов работают в непрерывно при интенсивном использовании оборудования, наличием высокой температуры окружающей среды и излучением теплоты от раскаленного или расплавленного металла. Кабина управления краном выполняется теплоизолированной, в ней также оборудуется установка для кондиционирования воздуха. Учёт режима работы крана при проектировании и выборе электрооборудования определяет энергетические показатели и надёжность при эксплуатации крановой установки. Правилами Госгортехнадзора предусматривается четыре режима работы механизмов: лёгкий - Л, средний - С, тяжёлый - Т, весьма тяжёлый - ВТ.
По таблице 1.1 Л2 определяем режим работы крана: Проектируемый мостовой кран работает в среднем режиме с ПВ40.
3 Исходные данные проектирования.
Исходными данными проектирования являются физичес - кие и геометрические параметры механизма подъема мосто -вого крана, а также размеры помещения цеха, в котором рас -положен кран. Исходные данные представлены в таблице 3.1.
Таблица 3.1 - Исходные данные проектирования.
Наименование параметра | Значение параметра |
1 | 2 |
Грузоподъемность главного крюка | 80 т |
Скорость подъема главного крюка | 4,6 м/мин |
Скорость передвижения крана | 75 м/мин |
Скорость передвижения тележки | 30 м/мин |
Высота подъема главного крюка | 6 м |
Вес главного крюка | 0,8т |
Диаметр барабана лебедки главного крюка | 700 мм |
Вес тележки | 33 т |
Длина перемещения моста | 60 м |
Длина перемещения тележки | 22 м |
КПД главного подъема под нагрузкой | 0,84 |
КПД главного подъема при холостом ходе | 0,42 |
КПД моста | 0,82 |
КПД тележки | 0,79 |
Длина помещения цеха | 62 м |
Ширина помещения цеха | 15,5 м |
Высота помещения цеха | 10 м |
Режим работы крана средний | С |
Продолжительность включения крана % | 40% |
4 Расчет статических нагрузок двигателя механизма подъема мостового крана
Целью расчета является определение статических нагрузок, приведенных к валу электродвигателя, для выбора мощности электродвигателя механизма подъема мостового крана.
Исходными данными являются технические характеристики мостового крана пункта 3.
4.1 Статическая мощность на валу электродвигателя подъемной лебедки при подъеме груза, в кВт определяется следующим образом:
Рст.гр.под = (4.1)
где G=m∙g=80∙103∙ 9,8=784000H-вес поднимаемого груза;
m-номинальная грузоподъемность, кг;
g-ускорение свободного падения, м/с2;
G0=m0∙g=0,8∙103∙9,8=7840Н-веспустого захватываю- щего приспособления;
m0 - масса пустого захватывающего приспособле -ния, кг;
vн = 4,6м/мин = 0,07 м/с - скорость подъема груза;
hнагр = 0,84 - КПД под нагрузкой.
Р ст.гр.под .= = 65,98 кВт.
4.2 Мощность на валу электродвигателя при подъеме пустого захватывающего приспособления, кВт:
Р ст.п.гр.= (4.2)
где hхх=0,42 - КПД механизма при холостом ходе.
Рст.п.гр.= =1,3 кВт.
4.3 Мощность на валу электродвигателя обусловленная весом груза, кВт:
Ргр.=(G+G0)*vс*10-3 (4.3)
где vс=vн=0,07 м/с - скорость спуска.
Ргр=(784000+7840)*0,07*10-3=55,42 кВт.
4.4 Мощность на валу электродвигателя, обусловленная силой трения, кВт:
Ртр.=( ) * (1 - hнагр.) * vc * 10-3 (4.4)