Смекни!
smekni.com

Информационное обеспечение системы управления подъёмно-транспортным механизмом (стр. 11 из 13)

Рассмотрев опасные факторы разработаем, по возможности, методы устранения их вредного влияния. Сразу оговоримся, что такие факторы как содержание работы, восприятие сигналов (информации) и их оценка, степень сложности задания, мы устранить не сможем, так как эти факторы являются неотъемлемой частью данной работы.

Воздействие остальных факторов можно ослабить, если разработать мероприятия по устранению их вредного влияния, которые будут одинаковы как для разработчика, так и для пользователя и которые сводятся к разработке рационального режима труда и отдыха, введением в рабочий график дополнительных перерывов для психологической разрядки и снижения утомляемости зрительного аппарата:

– при восьмичасовом рабочем дне и уровне нагрузки в 5 часов непосредственной работы с терминалами суммарное время регламентированных перерывов должно составлять 70 минут;

– через каждые 15-20 минут следует проводить гимнастику для глаз, через 30-40 минут – комплекс физических упражнений с целью снижения нервно-эмоционального напряжения, утомления зрительного анализатора, устранения влияния гиподинамии (пониженная подвижность вследствие уменьшения силы движений) и гипокинезии (вынужденное уменьшение объема произвольных движений вследствие характера трудовой деятельности – малая подвижность);

– необходимо выдерживать оптимальное расстояние глаз до экрана монитора – 60-70 см;

– регламентированные перерывы следует устанавливать через 1,5-2,0 часа от начала рабочей смены и через 1,5-2,0 часа после обеденного перерыва продолжительностью 20 минут каждый или продолжительностью 15 минут через каждый час работы. Рекомендуется также самостоятельно корректировать длительности перерывов и отдыхов и применять индивидуальный подход в организации времени работы с ЭВМ;

– продолжительность непрерывной работы с видеодисплеями без регламентированного перерыва не должна превышать 2-х часов;

– использовать прямой контраст;

– использовать рассеянный свет;

– экран дисплея располагать ниже уровня глаз с наклоном.

Рассматривая данную работу с точки зрения экологичности можно отметить, что компьютеры являются потенциальными источниками электромагнитных излучений, включая рентгеновское (невидимое излучение, способное проникать, хотя и в разной степени, во все вещества; представляет собой электромагнитное излучение с длиной волны порядка 10-8 см), ультрафиолетовое (источниками УФИ может быть естественное и искусственное освещение), инфракрасное (источником инфракрасного освещения является любое нагретое тело) и ионизирующее (вид излучения, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков). Электромагнитные излучения воздействуют на сердечно-сосудистую систему и приводят к нарушению эндокринных и обменных процессов. Высокая или низкая температура воздуха также отрицательно сказывается на функциональном состоянии человека.

6.3. Экологичность работы

Излучательные характеристики монитора:

– электромагнитное поле монитора в диапазоне частот 20 Гц- 1000 МГц;

– статический электрический заряд на экране монитора;

– ультрафиолетовое излучение в диапазоне 200- 400 нм;

– инфракрасное излучение в диапазоне 1050 нм- 1 мм;

– рентгеновское излучение > 1,2 кэВ.

6.3.1. Компьютер как источник переменного электромагнитного поля

Основными составляющими частями персонального компьютера являются: системный блок и разнообразные устройства ввода и вывода информации: клавиатура, дисковые накопители, принтер, сканер, и т. п. Каждый персональный компьютер включает средство визуального отображения информации – монитор или дисплей. Персональные компьютеры часто оснащают сетевыми фильтрами, источниками бесперебойного питания и другим вспомогательным электрооборудованием. Все эти элементы при работе персонального компьютера формируют сложную электромагнитную обстановку на рабочем месте пользователя (см. таблицу 6.3).

Таблица 6.3

Персональный компьютер как источник электромагнитного поля

Источник

Диапазон частот

Монитор сетевой трансформатор блока питания

50 Гц

Статический преобразователь напряжения в импульсном блоке питания

20 - 100 кГц

Блок кадровой развертки и синхронизации

48 - 160 Гц

Блок строчной развертки и синхронизации

15 110 кГц

Ускоряющее анодное напряжение монитора (только для мониторов с ЭЛТ)

0 Гц (электростатика)

Системный блок (процессор)

50 Гц - 1000 МГц

Устройства ввода/вывода информации

0 Гц, 50 Гц

Источники бесперебойного питания

50 Гц, 20 - 100 кГц

Кроме того, на рабочем месте пользователя источниками более мощными, чем компьютер, могут выступать объекты, неполный перечень которых приведен в таблице 6.4

Таблица 6.4

Внешние источники электромагнитного поля на рабочем месте пользователя ПК

Источник

Диапазон частот (первая гармоника)

ЛЭП

50 Гц

Трансформаторные подстанции

50 Гц

Распределительные щиты

50 Гц

Электропроводка

50 Гц

Бытовые и конторские электроприборы

50 Гц

Телевизоры

0- 15,6 кГц

Радиостанции ДВ

30- 300 кГц

Соседние ПК

0- 1000 МГц

Шведский институт защиты от излучений, разработчик спецификаций стандарта безопасности MPR II, в своем отчете приводит результаты измерений электромагнитного поля 150 моделей мониторов (см. таблицу 6.5)


Таблица 6.5

Максимальные и средние величины электромагнитного излучения по данным Шведского института защиты от излучений

Среднее значение Максимальное значение
Расстояние 0,5 м 0,3 м 0,5 м 0,3 м
Направление излучения по оси вокруг по оси вокруг по оси по оси
Вид поля, диапазон частот, единица измерения
магнитное поле, 5Гц- 2кГц, нТл <200 <200 <200 260 500 730
магнитное поле, 2- 400 кГц, нТл <10 13 52 52
электрическое поле, 5Гц- 2кГц, В/м <10 17 74 152
электрическое поле, 2- 400 кГц, В/м 1,7 1,9 4,2 12 12 32
электростатический потенциал, В 500 500 500 19900 19000 19000

Наличие в помещении нескольких компьютеров со вспомогательной аппаратурой и системой электропитания создает сложную картину электромагнитного поля. Очевидно, что электромагнитная обстановка в помещениях с компьютерами крайне сложная, распределение полей неравномерное, а уровни достаточно высоки, чтобы говорить об опасности их биологического действия.


7. СОЦИАЛЬНАЯ ЗНАЧИМОСТЬ

Данная работа имеет большое социальное значение, так как она призвана существенно облегчить труд большого количества рабочих, занятых в различных сферах производства. Результаты проекта являются практически полезными и могут быть использованы при разработке автоматизированных систем управления подъемно-транспортными механизмами. Задачи, решенные в ходе проектирования, позволят обезопасить труд рабочего персонала, ускорить производственный процесс, сэкономить затраты на обучения операторов, различные ресурсы.

Использование методов нечеткой логики позволяет значительно облегчить разработку управляющей системы, осуществлять управление системой в особых точках, там, где управление с использованием обычных алгоритмов невозможно или управление не удовлетворяет требуемым параметрам качества.


ЗАКЛЮЧЕНИЕ

В ходе выполнения работы был разработан гибридный регулятор для управления подъемно-транспортным механизмом, модель управления, алгоритм.

Были рассмотрены и оценены существующие требования к процессу управления, внешние факторы, функционирования системы в особых точках.

Для решения данной задачи был применен аппарат нечеткой логики и на его основе разработан алгоритм управления процессом переноса груза.

В ходе разработки проекта была рассмотрена его экономическая целесообразность, а так же глубоко проработана проблема обеспечения безопасности инженера- проектировщика.

СПИСОК ИСТОЧНИКОВ

1. Методы робастного, нейро-нечеткого и адаптивного управления: Учебник/Под ред. Н.Е.Егупова; Издание 2-е. – М.: Изд-во МГТУ им. Н.Э.Баумана, 2002. – 744 с.

2. Финаев В.И. Модели систем принятия решений: Учеб. пособие. Таганрог: ТРТУ, 2005г. – 118 с.

3. Нечеткие множества в моделях управления и искусственного интеллекта/А.Н.Аверкин, И.З.Батырин, А.ф.Блиншун, Б.В.Силаев, Б.Н.Тарасов. ‑ М.: Наука, 1986. ‑ 312 с.

4. Финаев В.И., Белоглазов Д.А. Микропроцессорный нечеткий регулятор подачи топлива//Материалы VII Всероссийской научной конференции студентов и аспирантов «Техническая кибернетика, радиоэлектроника и системы управления». Таганрог, ТРТУ, 2004.