Смекни!
smekni.com

Технология получения винилацетата окислением этилена в присутствии уксусной кислоты (стр. 2 из 5)

4. Технология получения винилацетата окислением этилена в присутствии уксусной кислоты

В реакциях с этиленом происходит прямое окислительное замещение атома водорода в молекуле этилена группами

на комплексных катализаторах, содержащих переходные металлы. [4]

Отечественными учеными (Я.К. Сыркин, И.И. Моисеев, М.Н. Варгафтик) было показано, что при пропускании этилена через раствор PdCl2в уксусной кислоте в присутствии ацетата натрия образуется винилацетат. При этом также образуются ацетальдегид и этилидендиацетат. В основе процесса лежит следующая реакция:

(1) [4]

Эта реакция ацетоксилирования этилена в присутствии восстановленного катализатора, в которой происходит замещение водорода в этилене группой СН2СОО - в присутствии кислорода. В качестве катализатора предложены хлорид и бромид палладия, ацетат палладия, металлический палладий и др. Для сравнения рассмотрим основные закономерности и технологию получения винилацетата окислением этилена в среде уксусной кислоты, как на гомогенном, так и на гетерогенном катализаторах. В промышленности получили распространение два принципиально отличных друг от друга способа получения винилацетата на основе реакции 1:

жидкофазный метод с применением окислительно-восстановительной каталитической системы;

газофазный метод с гетерогенным катализом на основе солей палладия или металлического палладия. [4]

В промышленности винилацетат жидкофазным окислением начали получать в 1965 г., а парофазным окислением - в 1970 г. [4]

4.1 Характеристика сырья технологии

Этилен (этен) СН2 = СН2 - простейший алкен (олефин), ненасыщенное соединение. Представляет собой бесцветный горючий взрывоопасный газ со слабым запахом. [8]

Регистрационный номер CAS - 74-85-1. [8]

Физические свойства: Т пл. = - 169,15° С, Т кип = - 103,71° С, Т вспышки в воздухе = = 136,1° С, Т самовоспламенения в воздухе = 490° С. [8]

Молекулярный масса - 28,05 г/моль. [8]

Плотность ρ = 0,001178 г/см3. [8]

Химические свойства: типичный представитель олефинов, обладает высокой реакционной способностью; нерастворим в воде, растворим в этаноле, хорошо растворим в диэтиловом эфире и углеводородах. В природе этилен практически не встречается. [8]

Основной метод получения этилена - пиролиз жидких дистиллятов нефти или низших парафиновых углеводородов. В России, Западной Европе и Японии сырьём служит прямогонный бензин; выход этилена около 30% с одновременным образованием значительного количества жидких продуктов, в т. ч. ароматических углеводородов. [8]

Этилен - самое производимое органическое соединение в мире. Общее мировое производство в 2005 г. составило 107 млн. т. и продолжает расти на 4 - 6% в год. [8]

Уксусная кислота (этановая кислота) СН3СООН - слабая, предельная одноосновная карбоновая кислота. Представляет собой бесцветную жидкость с характерным резким запахом и кислым вкусом. [8]

Регистрационный номер CAS - 64-19-7. [8]

Физические свойства: Т пл. = 16,75° С, Т кип = 181,1° С, Т вспышки в воздухе = 38° С, Т самовоспламенения в воздухе = 454° С. [8]

Молекулярная масса - 60,05 г/моль. [8]

Плотность ρ = 1,0492 г/см3. [8]

Химические свойства: неограниченно растворима в воде, смешивается со многими растворителями. В уксусной кислоте хорошо растворимы органические соединения и газы. [8]

Ранними промышленными методами получения уксусной кислоты были окисление ацетальдегида и бутана. [8]

Окисление ацетальдегида кислородом воздуха в присутствии ацетата марганца (II) при повышенной температуре и давлении:

2 СН3СНО + О2 → СН3СООН.

Выход уксусной кислоты составлял около 95%. [8]

Окисление н-бутана при t = 150ч200° C и давлении 150 атм в присутствии катализатора ацетата кобальта:

2 С4Н10 + 5 О2 → 4 СН3СООН + 2 Н2О. [8]

Оба метода базировались на окислении продуктов крекинга нефти. В результате повышения цен на нефть оба метода стали экономически невыгодными, и были вытеснены более совершенным каталитическим процессом карбонилирования метанола монооксидом углерода, который происходит по формальному уравнению:

СН3ОН + СО → СН3СООН (в присутствии катализатора - йодида кобальта). [8]

4.2 Жидкофазный способ

4.2.1 Теоретические основы

По этому методу промышленное применение получил катализатор, содержащий анион хлора и катионы Pd, Си и щелочного металла в среде уксусной кислоты. Жидкофазный процесс синтеза винилацетата включает следующие стехиометрические реакции:

(2) [4]

Реакция 2 катализируется ацетат - ионом. Металлический палладий в уксусной кислоте медленно окисляется кислородом (низкая растворимость кислорода, невысокие константы скорости реакций окисления), поэтому в систему добавляются катализаторы и промоторы для ускорения этой реакции. Такими катализаторами являются соли меди или железа, n-бензохинон, а промотором - хлорид-ион, который вводится в виде LiCl. В системе протекают реакции:

(3) [4]

(4) [4]

Реакции 2 - 4 составляют суммарную реакцию процесса (реакция 1). Хлорид-ион, обладающий высокой окислительной активностью, способствует также растворению металлического палладия. Кроме уксусной кислоты в качестве растворителя могут применяться эфиры, ангидриды, пиридин, хлороформ и др. [4]

Известен промышленный способ получения винилацетата посредством взаимодействия этилена, уксусной кислоты и кислорода в присутствии гетерогенного биметаллического палладий - золотого (Pd - Au) катализатора [9], а также катализатора, который содержит катализаторный носитель, палладий, гетерополикислоту, промоутер получения винилацетата, включающий ацетат кадмия, золото, медь, никель [10].

Механизм реакции 2 включает промежуточное образование

- комплексов, изомеризацию в палладий-органические соединения и гетеролитический распад последнего с образованием металлического палладия. [4]

Из промежуточно образующегося карбкатиона при отщеплении протона в уксусной кислоте получается винилацетат, а при взаимодействии c

этилидендиацетат:

Схема механизма реакции представлена ниже:

Ацетат натрия, необходимый для протекания этой реакции, в случае хлорида палладия является источником ионов ацетата, участвующих во внутрисферной нуклеофильной, а также в процессе изомеризации л-комплекса в металлоорганическое соединение. [4]

Активность палладиевого катализатора синтеза винилацетата повышается почти в 10 раз при добавлении 2-10% (мас) ацетатов щелочных металлов. Эффективность действия катионов щелочных металлов убывает в последовательности:

. [4]

В жидкой фазе в результате длительного контакта винилацетата с реакционной водой при каталитическом действии солей металлов и хлор - иона получается ацетальдегид. Кроме того, при непосредственном окислении этилена в присутствии воды по тому же механизму так же образуется ацетальдегид. В результате в этом процессе производится регулируемое количество ацетальдегида (в мольном соотношении ацетальдегид: винилацетат 1: 0,3-2,5 в зависимости от содержания воды) (рис.1). [4]

Рисунок 2. Изменение мольного соотношения ацетальдегид: винилацетат (л) в жидкой фазе в зависимости от содержания воды при температуре процесса 100° С [4]

Повышения содержания воды, температуры, длительности пребывания винилацетата в реакционной зоне, содержания палладия в растворе катализатора способствуют гидролизу винилацетата с образованием ацетальдегида. [4]

Для полной компенсации уксусной кислоты, используемой в синтезе винилацетата, требуется определенное количество ацетальдегида. Для этой цели необходимо поддерживать мольное соотношение винилацетата и ацетальдегида, равное 1,14. Следовательно, для получения винилацетата этим методом можно использовать необезвоженную свежую уксусную кислоту и не проводить обезвоживания возвратной уксусной кислоты, что значительно снижает затраты на разделение реакционной смеси. При этом на 1 моль винилацетата можно получать 0,3-0,4 моля ацетальдегида. [4]

Кроме того, выход винилацетата и ацетальдегида, конверсия исходных продуктов, выход побочных продуктов зависят от температуры и давления, при которых протекают реакции, а также от концентрации PdCl2, соотношения Pd и Си, соотношения между этиленом, кислородом и уксусной кислотой. Наиболее активно катализатор работает при температуре 100-130°С. Температура определяет, главным образом, скорость процесса, так как в интервале 110 - 130 °С скорость реакции при подъеме температуры на 10°С увеличивается в 1,3 раза. С ростом температуры усиливается гидролиз винилацетата, приводящий к повышению выхода ацетальдегида. Однако влияние концентрации воды на выход ацетальдегида сказывается сильнее, чем влияние температуры. [4]

Повышение парциальных давлений этилена и кислорода приводит к увеличению растворимости и скорости основной реакции. При этом снижается выход этилидендиацетата. Увеличение парциального давления этилена приблизительно пропорционально увеличивает объемную производительность реактора. Например, если при парциальном давлении этилена 0,98 МПа и общем давлении 2,8 МПа получается 0,58 моль/час винилацетата, то при парциальном давлении этилена, равном 2,6 МПа, и том же общем давлении выход винилацетата доходит до 0,88 моль/час. Увеличение общего давления приводит к сокращению выхода этилидендиацетата и ацетальдегида при увеличении выхода винилацетата. В частности, при увеличении давления от 0,1 до 2,5 МПа выход этилидендиацетата уменьшается от 100 г до 16 г, а выход винилацетата увеличивается от 0,8 г до 223 г с 1 л катализатора в 1 час. В связи с этим рекомендуется давление от 0,5 до 10 МПа. Чаще всего процесс проводят при 4 МПа, так как дальнейшее повышение давления практически не оказывает влияния на выход винилацетата. [4]