Коэффициент полезного действия электродвигателя приноминальной мощности:
60 Вт — 0,6 (частота вращения 3000 и 1500 мин -1);
90 Вт — 0,67 (частота вращения 3000 мин -1) и 0,62 (частота вращения 1500 мин -1);
120 Вт — 0,68 (частота вращения 3000 мин -1) и 0,64 (частота вращения 1500 мин -1).
Для пуска электродвигателей и защиты их в аварийных режимах предусматривается применение пускозащитной аппаратуры.
Электродвигатель холодильника в нормальных условиях работает циклично, т. е. через определенные промежутки времени включается и выключается. Отношение части цикла, в продолжение которой электродвигатель работает, к общей продолжительности цикла называют коэффициентом рабочего времени. Чем он больше (при постоянной температуре в помещении), тем ниже температура в холодильной камере и тем больше будет среднечасовой расход электроэнергии. Определенную цикличность в работе холодильника (коэффициент рабочего времени) обеспечивает датчик-реле температуры — прибор, с помощью которого регулируется температура в шкафу холодильника.
Озонобезопасные хладагенты. На Международном совещании в Копенгагене (ноябрь 1992 г.) было принято решение о прекращении производства с 1 января 1996 года озоноопасных хладагентов R11, R12 и R502.
В переходный период допускалось применение хладагента R134a (C2H2F4), который не воспламеняется во всем диапазоне температур эксплуатации.
Хладагент R134a имеет эксплуатационные характеристики, близкие к R12. Его рекомендовалось применять в бытовых холодильниках и он может быть использован при переводе холодильных систем бытовых холодильников с R12 на R134a.
Холодильный агрегат бытового холодильника состоит из мотор-компрессора, испарителя, конденсатора, системы трубопроводов и фильтра-осушителя.
В наиболее распространенных бытовых холодильниках компрессор установлен внизу, под шкафом, конденсатор — на задней стенке, а испаритель образует небольшое морозильное отделение в верхней части камеры. Иногда применяется иная компоновка: компрессор устанавливают на шкафу, горизонтальный и частично наклонный конденсатор — над ним, а испаритель, как и в предыдущем случае, — в верхней части камеры, т. е. под компрессором (рис. 1.3).
В напольных холодильниках различают три типа агрегатов: агрегаты с испарителем, который устанавливают через люк задней стенки шкафа; агрегаты с испарителем, который монтируют через дверной проем; несъемные холодильные агрегаты, установленные в шкаф и залитые пенополиуретаном.
Компрессоры по конструкции подразделяют на исполнения:
ХКВ — с кривошипно-кулисным механизмом;
ХШВ — с шатунным механизмом.
Компрессоры выпускаются без устройства дополнительного охлаждения и с ним (М).
Структура условного обозначения компрессора выглядит так:
XXX МТ ГОСТ 17008—85
1 2 3 4 5 6
где
1- компрессор хладоновый герметичный;
2- описанный объем (см3/1 ход);
3- напряжение и частота тока;
4- устройство для дополнительного охлаждения имеется;
5- климатическое исполнение (только для исполнения Т);
6- обозначение стандарта.
Пример условного обозначения компрессора хладонового, герметичного, кулисного, с вертикальной осью вращения, описанного объема 5 см3/1 ход, для сети с напряжением 220 В и частотой 50 Гц, без устройства дополнительного охлаждения, климатического исполнения УХЛ:ХКВ 5—1 ГОСТ 17008—85.
Примечания: 1. Описанный объем — объем, который вытесняется поршнем за единицу времени или за один ход при номинальной частоте вращения.
2. УХЛ — для условий эксплуатации в районе с тропическим климатом.
Рис.1.3. Компоновка холодильных агрегатов бытовых холодильников с нижним (а) и верхним (б) расположением компрессора
Кривошипно-кулисный мотор-компрессор (рис. 1.4.) с вертикальным расположением вала подвешен на пружинах 23 (рис. 1.5.) внутри герметичного кожуха 1. В зависимости от конструкции подвески пружины работают на сжатие или растяжение и служат для гашения колебаний, возникающих при работе компрессора.
Электродвигатель однофазный, асинхронный, с пусковой обмоткой. Для пуска двигателя и защиты его от перегрузок применяют пускозащитное реле, соединенное с двигателем при помощи клеммной колодки, закрепленной на проходных контактах пластинчатой скобой. Реле установлено на раме.
Ротор 2 электродвигателя помещен непосредственно на валу 21 компрессора. Статор 3 электродвигателя прикреплен к корпусу 6 компрессора четырьмя винтами 4. Обмотка статора двухполюсная, четырехкатушечная. Корпус компрессора чугунный, одновременно служащий опорой вала. Цилиндр 16 отлит вместе с глушителями. Он установлен на корпусе мотор-компрессора по четырем контрольным штифтам 8 и прикреплен ккорпусу двумя винтами. Для уменьшения инерционных масс поршень 18 изготовлен полым из листовой стали. Ползун 20 кулисы чугунный. На торце цилиндра установлена прокладка 15 всасывающего клапана и сам клапан 14 по двум установочным цилиндрическим штифтам 8. Нагнетательный клапан 12 вместе с ограничителем прикреплен к седлу заклепками. Клапаны установлены на штифты 8. На тех же штифтах имеются скобы, которые ограничивают подъем клапана. Высота подъема всасывающего клапана 0,5 мм, нагнетательного — 1,18 мм. Диаметр всасывающего отверстия 5 мм, нагнетательного — 3,4 мм. Подъем клапана ограничен, чтобы не было чрезмерных перегибов и стуков.
Седло 13 клапанов и головка 10 цилиндра отлиты из чугуна. Вал ротора вращается в подшипнике корпуса компрессора. Кожух изготовлен из листовой стали.
Рис. 1.4 Общий видкривошипно-кулисного мотор-компрессора: 1-нагнетательный патрубок; 2-операционный патрубок, 3-всасывающий патрубок, 4-патрубки устройства для дополнительного охлажденияРис. 1.5. Конструкция кривошипно-кулисного мотор-компрессора (в сборе):
1 — герметичный кожух в сборе; 2 — ротор электродвигателя; 3 — статор электродвигателя; 4, 5 — винты; 6 —корпус компрессора; 7 — крышка кожуха; 8 — штифты; 9 — винт; 10 — головка цилиндра; 11 — прокладка клапана нагнетания; 12 — нагнетательный клапан; 13 — седло клапанов; 14 — клапан всасывающий; 15 — прокладка всасывающего клапана; 16, 17 — цилиндры; 18 — поршень; 19 — обойма; 20 — ползун; 21 — вал; 22 — трубка нагнетательная; 23 — пружина буферная; 24 — шпилька.
Трущиеся части компрессора смазываются под действием центробежной силы через косое отверстие в нижнем торце коренной шейки вала. При вращении вала 21 масло, попадая в наклонный канал, поднимается вверх и поступает к трущейся парс вал 21 — корпус 6 компрессора. Пара поршень 18 — цилиндр 16 смазывается разбрызгиванием. Пары хладона всасываются из кожуха в цилиндр 16 через глушитель всасывания и нагнетаются в трубку 22. Змеевик нагнетательной трубки 22 способствует гашению колебаний мотор-компрессор, корпус которого опирается на три буферные пружины 23. Пружины предохраняет oт выпадения шпилька 24.
Кожух 1 закрыт сверху крышкой 7, приваренной по фланцу и ограничивающей перемещение мотор-компрессора вверх.
Конденсатор холодильного агрегата является теплообменным аппаратом, в котором хладагент отдает тепло окружающей его среде. Пары хладагента, охлаждаясь до температуры конденсации, переходят в жидкое состояние. Конденсатор представляет собой трубопровод, изогнутый в виде змеевика, внутрь которого поступают пары хладона. Змеевик охлаждается снаружи окружающим воздухом. Наружная поверхность змеевика обычно недостаточна для отвода тепла воздухом, поэтому поверхность змеевика увеличивают за счет большого количества ребер, креплением змеевика к металлическому листу и другими способами.
Широкое распространение получили конденсаторы конвективного охлаждения с проволочным оребрением (рис. 1.6, а). Конденсатор представляет собой змеевик из медной трубки с приваренными к ней с обеих сторон (друг против друга) ребрами из стальной проволоки диаметром 1,2...2 мм. Применяются также конденсаторы щитовые с завальцованной трубкой.
В холодильниках старых моделей применялись листотрубчатые конденсаторы. Листотрубчатый щитовой конденсатор (рис. 1.6, б) состоит из змеевика, который приварен, припаян или плотно прижат к металлическому листу, выполняющему роль сплошного ребра. В листе иногда делают прорези с отбортовкой по типу жалюзи. Это увеличивает теплопередающие поверхности за счет торцов отогнутых металлических язычков и циркуляции воздуха. Диаметр труб 4,75...8 мм, шаг 35...60 мм, толщина листа 0,5...1 мм.
Трубы змеевика на листе обычно располагают горизонтально в некоторых листотрубчатых конденсаторах их располагают вертикально, чтобы последние витки трубопровода не нагревались от кожуха компрессора. Длина трубопровода конденсатора составляет 6500...14 000 мм.
Листотрубчатый прокатно-сварной конденсатор (рис. 1.6, в) изготовлен из алюминиевого листа толщиной 1,5 мм с раздутыми в нем каналами змеевика. Конденсатор имеет форму сплюснутой трубы и закреплен на задней стенке шкафа холодильника. При сравнительно небольших размерах конденсатор работает эффективно благодаря высокой теплопроводности алюминия и теплопередачи через однородную среду. Для более эффективной циркуляции воздуха в щите сделаны сквозные просечки. Конденсатор с одной стороны соединен трубопроводами с нагнетательной линией компрессора, а с другой через фильтр и капиллярную трубку - с испарителем. Для защиты от коррозии конденсатор окрашивают черной эмалью.