Смекни!
smekni.com

Термодинамический расчет, анализ и оптимизация идеализированного цикла поршневого ДВС (стр. 1 из 4)

Государственное образовательное учреждение высшего профессионального образования

ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Гидромеханика и транспортные машины»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

«Теплотехника»

Тема:

«Термодинамический расчет, анализ и оптимизация

идеализированного цикла поршневого ДВС»

Выполнил: студент Д.С Кураш,

Группы: МГ-317

подпись, дата

Шифр курсовой работы __________

Проверил: А.Х. Шамутдинов

Оценка подпись, дата

г. Омск, 2010

СОДЕРЖАНИЕ (пример)

1.1 Содержание задачи №1 3

1.2 Краткое описание цикла поршневого ДВС 3

1.3 Расчет цикла ДВС 5

1.3.1 Определение параметров характерных точек цикла 5

1.3.2 Расчет термодинамических процессов 7

1.3.3 Расчет характеристик цикла 12

1.3.4 Построение Т-s диаграммы цикла 15

1.4 Оптимизация цикла варьированием заданного параметра 20

Задача № 1

1.1 Содержание задачи (вариант 14)

Для цикла поршневого ДВС, заданного параметрами р1 =0.14 МПа; Т1 = 300 К; ε = 18; λ = 1,3; ρ = 1,48 кг/м3; n1 = 1,34; n2 = 1,28, определить параметры всех характерных точек цикла, термодинамические характеристики каждого процесса и цикла в целом. Исследовать влияние параметра n1 на величину термического КПД ηt и максимальной температуры Тmax при варьировании указанного параметра в пределах

20 %. По результатам расчетов построить графики зависимостей ηt и Тmax от варьируемого параметра, на основании которых сделать заключение об его оптимальном значении, принимая за предельно допустимое значение Тmax величину Тпр = 1600 К. В качестве рабочего тела принимать сухой воздух.

1.2 Краткое описание цикла

Для анализа задан цикл поршневого ДВС со смешанным подводом теплоты, который реализуется в современных быстроходных дизельных двигателях. Подробное описание такого цикла приведено в учебниках [1,3] и др., ниже приведено краткое описание.

На рис. 1 приведена идеализированная p-v диаграмма, наглядно отображающая основные процессы такого цикла. Во время хода впуска (на диаграмме не показан) атмосферный воздух, проходя через систему фильтров и открытый впускной клапан, поступает в цилиндр двигателя. В конце впуска (точка 1 на диаграмме) впускной клапан закрывается, и по мере перемещения поршня к верхней мертвой точке (ВМТ) происходит политропное сжатие воздуха (процесс 1-2). Ввиду быстротечности этого процесса характер его близок к адиабатному, температура воздуха к концу сжатия (точка 2) сильно увеличивается, в этот момент под большим давлением производят впрыск топлива, в мелкодисперсном виде. Топливо при высокой температуре воздуха, в который оно попадает, очень быстро испаряется и самовоспламеняется. Первые порции при этом сгорают практически мгновенно (процесс 3-4).

Для интенсификации процессов топливо часто впрыскивают в специальную предкамеру из жаростойкой стали, имеющую очень высокую температуру. Последующие порции топлива сгорают по мере их попадания в цилиндр во время перемещения поршня от ВМТ к НМТ (нижней мертвой точке). При этом давление в цилиндре практически не изменяется (процесс 3-4). Далее совершается политропное расширение продуктов сгорания (процесс 4-5), по окончании которого, когда поршень приходит в НМТ, открывается выпускной клапан (точка 5) и во время хода выталкивания продукты сгорания выбрасывается в атмосферу. Поскольку суммарная работа процессов всасывания и выталкивания практически равна нулю, идеализируя картину, их заменяют одним изохорным процессом отвода теплоты (процесс 5-1).

1.3 Расчет цикла ДВС *

1.3.1 Определение параметров характерных точек цикла

Точка 1. По формуле (5) из расчёта ДВС находим:

Точка 2. Из формулы (6) находим

. Используя уравнение (6), давление p2 найдем по формуле (8):

.

Величину Т2 находим из уравнения (4):

.

Точка 3. Из формулы (9) находим

Температуру Т3 находим из уравнения (4):

.

Используя соотношения (12) находим Т3:

.

Практическое совпадение результатов (невязка около 0,1 % возникает из-за округлений) служит подтверждением безошибочности проведенных вычислений.

Точка 4.

Из выражения (10)

.

Температуру Т4найдем по выражению (13):

.

Точка 5.

. Давление в точке 5 найдем так же, как находили его для точки 2:

.

Температуру Т5 находим из формулы (4):

.

Полученные результаты заносим в сводную таблицу (табл. 1).

1.3.2 Расчет термодинамических процессов

Рассчитываем теперь процесс 1-2. Это политропный процесс с показателем политропы n1 = 1,34. Чтобы реализовать формулы (14) – (18), сначала по формулам (19) и (20) рассчитываем значения средних теплоемкостей, предварительно рассчитав t1 и t2 :

.

Теплоту процесса 1-2 находим по формуле (14):

,

Работу процесса 1-2 находим по формуле (15):

Изменения внутренней энергии и энтальпии рассчитываем по формулам (16) и (17):

.

По формуле (18) находим величину Δs1-2:

Далее по формуле (21) находим:

Погрешность расчёта (22):

Расчет процесса 2-3 начинаем также с определения величин

Поскольку процесс 2-3 изохорный (у таких процессов значение n = ±

), формулы (14), (16), (17) и (18) существенно упрощаются, позволяя рассчитывать значения соответствующих величин:

Для самопроверки воспользуемся соотношением (24):

Погрешность расчёта (24) составляет незначительную величину:

Процесс 3-4 изобарный и для него показатель политропы n = 0. Это тоже упрощает формулы (14) – (16). Расчеты начинаем с определения температуры t4 и теплоемкостей: