Смекни!
smekni.com

Подъёмно-транспортные машины (стр. 2 из 2)

Определение опорных реакций.

Вертикальную RV и горизонтальную RH реакции (кН) в опорах определяют путем составления уравнений статики.

Длина АС равна

Из подобия треугольников AD=1,615 м; DC=3,77 м.

отсюда β = 68,2о, α = 21,8о.

Рассмотрим узел С.

Внешними силами будут являться G, внутренними – усилия в стержнях S1,S2.

Составим два уравнения равновесия:

Рассмотрим узел В.

Из рис. 5 видно, что реакция опоры Вх равна усилию в стержне ВС, поэтому Вх=S1=112.19 kH.

Рассмотрим узел А.


Чтобы определить АХ и АУ составим два уравнения равновесия.


Выбор подшипников.

Так как частота вращения кранов обычно не более 1 об/мин, а угол поворота, как правило, меньше 360° то подшипники выбирают по статической грузоподъемности.

Типы подшипников. Для восприятия горизонтальных (радиальных) нагрузок применяют радиальные сферические двухрядные шариковые подшипники с цилиндрическим отверстием (тип 1000) по ГОСТ 720-75 или (реже) роликовые радиальные сферические двухрядные с цилиндрическим отверстием (тип 3000) по ГОСТ 5721-75. Для восприятия (вертикальных (осевых) нагрузок применяют шариковые упорные одинарные подшипники (тип 8000) по ГОСТ 16874-75. При нагрузках, превышающих значения допускаемой статической грузоподъемности, можно применять нестандартные подшипники качения.

Типоразмер подшипника. Выбирают по условию: максимальная статическая нагрузка на подшипник, равная реакции в опоре, не должна превышать базовой статической радиальной грузоподъемности Сor, (для сферических подшипников) или базовой статической осевой грузоподъемности Сoa (для упорных подшипников).

Выбрав типоразмер подшипника, необходимо выписать его основные параметры: обозначение типоразмера; внутренний и наружный диаметры; ширину (для сферических) или высоту (для упорных); базовую статическую грузоподъемность.

Определение момента сопротивления повороту.

Момент сопротивления повороту (кН*м) крана, действующий в период разгона механизма, равен

где Ттр - момент сил трения в опорно-поворотном устройстве;

Тв - момент ветровой нагрузки рабочего состояния (если кран работает на открытом воздухе);

Тин - момент сил инерции, действующих на груз, медленно поворачивающиеся части крана (металлоконструкция поворотной части, противовес и т.д.) и вращающиеся части механизма поворота (ротор двигателя, тормозной шкив, муфты и т.д.).

Момент сил трения в опорно-поворотном устройстве. Равен сумме моментов сил трения в верхней (Ттр.в) и нижней (Ттр.н) опорах:

Момент сил трения в верхней опоре. Для настенного крана и крана с вращающейся колонной момент равен

где ƒ - приведенный коэффициент трения скольжения в подшипнике; для подшипников качения ƒ=0,015.

Момент сил трения в нижней опоре для настенного крана и крана с вращающейся колонной равен

Момент ветровой нагрузки рабочего состояния.

Предполагая, что кран работает в закрытом помещении, примем ветровую нагрузку равной нулю.

Момент сил инерции.

Тин=J*ε,

где J - момент инерции (относительно оси поворота крана) медленно поворачивающихся частей крана, груза и вращающихся частей механизма поворота, т*м2;

ε - угловое ускорение крана, рад/с2.

Момент инерции

J=γ*Jм.п.ч,

где γ = 1,2... 1,4 - коэффициент учета инерции вращающихся частей механизма поворота;

Jм.п.ч - момент инерции (относительно оси поворота крана) груза и медленно поворачивающихся частей крана, т*м2;

Jм.п.ч=ξΣmϳ*xϳ,

где mϳ - масса ϳ-й медленно поворачивающейся части (груз, противовес, стрела и т.д.);

xϳ - расстояние от центра массы ϳ-й медленно поворачивающейся части до оси поворота крана, м;

ξ = 1,3... 1,4-коэффициент приведения геометрических радиусов вращения к радиусам инерции.

Расстояния от центров массы груза и поворотной части до оси поворота крана равны: xгр=L=5 м; хпов=0,3L=1,5 м. Масса груза G=40 kH =4 т, масса крана G1=0,4G=1,6 т.

Угловое ускорение при разгоне найдем по допустимому линейному ускорению груза [а]:

для кранов грузоподъемностью от 3,2 до 12,5 т при перевозке штучных грузов и ручной строповке, [a]=0.15 м/с2.

Определение мощности двигателя.

Мощность двигателя N (кВт) определяют по формуле

где ωкр - угловая скорость вращения крана, рад/с, примем

ηпр - предварительное значение к. п. д. механизма при использовании в механизме червячной передачи ηпр = 0,75;

Значение ψп.ср зависит от типа двигателя, для двигателя типа 4АС ψп.ср=1,65…1,8 принимаем ψп.ср=1,7 .

Расчет металлоконструкций крана с поворотной ферменной

консолью.

Общая схема исполнения крана с постоянным вылетом и поворотной ферменной консолью показана на рис. 9.

Собственный вес консоли можно считать сосредоточенным и приложенным в точке F. Усилие в канате механизма подъема необходимо разложить по узлам в соответствии со схемой рис. 9,б.

Расчетное значение полезной нагрузки определяют так же, как и для мостовых кранов.

Возникающие при вращении крана центробежная (в плоскости консоли) сила Рг. ц и тангенциальная (по касательной к окружности, описываемой концом консоли) сила Рг. т от инерции массы груза считаются приложенными через канат к концу консоли. Значение этих сил:

mQ - масса груза;

L - вылет консоли;

ω, ε - угловые скорость и ускорение вращения консоли, рад/с и рад/с2.

Подбор стержней ферм консоли производят в соответствии с формулами:

условия прочности растянутых стержней

условия прочности сжатых стержней

Так как кран имеет постоянный вылет, прогиб конца консоли у него не нормируется и, следовательно, проверка статической и динамической жесткости не является обязательной.