Смекни!
smekni.com

Разработка рациональных режимов резания при эксплуатации пил круглых (стр. 2 из 5)

1.7 Краткое описание конструкции станка

Станок торцовочный модели ЦПА40 прост по устройству и надежен в эксплуатации при условии выполнения всех требований.

На станине – полой чугунной отливке, являющейся одновременно масляным резервуаром, смонтирован опорный корпус суппорта. Корпус совместно с суппортом, при надобности, может подниматься и поворачиваться на определенную величину.

Суппорт опирается на подшипниках качения и посредством гидропривода совершает возвратно-поступательные движения. В головной части суппорта крепится электродвигатель с режущим инструментом на валу.

Управляется станок дистанционно посредством педали.

1.8 Требования к качеству обработанной поверхности, факторы, влияющие на качество обработки

Влияние породы древесины. На обрабатываемость, т. е. на силовые и качественные показатели процесса резания, влияют структура и механические свойства, которые различны у древесины разных пород.

Влияние влажности. При увеличении влажности до предела гигроскопичности снижаются показатели механической прочности древесины и ,следовательно, уменьшается сила резания.

При открытом резании древесины, имеющей влажность выше предела гигроскопичности, свободная влага попадает на поверхности лезвия и действует как смазка. При этом уменьшается коэффициент трения и дополнительная сила резания.

При закрытом резании, когда с древесиной активно взаимодействуют задние поверхности вспомогательных лезвий (боковые поверхности зубьев) и даже поверхности корпуса инструмента, влияние влажности древесины проявляется по-другому: при увеличении влажности повышаются упругие свойства древесины, усиливается «защемление» лезвия в пропиле, увеличивается сила резания.

Влияние температуры. Прочность древесины, особенно влажной, при нагревании древесины уменьшается. Это вызывает уменьшение силы резания.

Влияние толщины срезаемого слоя. Известно, что сила резания и ее составляющие – касательная и нормальная – складываются из сил, действующих со стороны отдельных элементов лезвия: режущей кромки, передней и задней поверхностей.

Для расчетов процесса резания необходимы численные значения касательной и нормальной сил резания, удельной работы резания, а также параметров шероховатости для различных толщин срезаемого слоя.

Влияние вида резания. Сила резания для трех главных видов различна: наименьшая требуется для поперечного резания, для продольного резания в тех же условиях она больше примерно в 2 раза, для торцового – в 5-6 раз.

Влияние угла резания. Угол резания

определяет положение передней поверхности лезвия относительно плоскости резания. Его величина влияет на силу резания по передней поверхности лезвия, а следовательно, и на общую силу резания.

Влияние заднего угла. Влияние заднего угла на силовые характеристики интенсивно проявляются при

<5-100, когда заметно увеличивается площадь контакта задней поверхности лезвия с заготовкой: удельная сила резания, нормальная и касательная силы интенсивно возрастают с уменьшением
.

Увеличение

сверх 5-100 не сказывается на силах резания непосредственно, однако при
>15-200 лезвие с небольшим углом резания
может утратить жесткость, а его изгиб при резании даст тот же эффект, что и увеличение угла резания: снижается качество резания.

Влияние остроты лезвия. Сила резания увеличивается по мере затупления режущей кромки. Затупление лезвия приводит к увеличению неровностей на поверхности резания. Анализ показывает, что наибольшее влияние на качество обработанной поверхности оказывает угол встречи резца с волокнами.

Влияние скорости резания. Эксперименты показывают, что увеличение скорости с 40-50 до 100 м/с вызывает рост силы резания на 30-40%. Качество обработки с увеличением скорости резания повышается. Это объясняется появлением добавочного подпора от силы инерции, который получают перерезаемые волокна древесины в дополнение к естественному сцеплению между ними. С появлением такого подпора волокна не успевают податься или отклониться под давлением резца и перерезаются им раньше, чем нарушиться связь их с соседними волокнами. В результате уменьшаются неровности разрушения на обработанной поверхности.

Не рекомендуется допускать следующие недостатки обработанной поверхности: ворсистость, мшистость, неровности разрушения(выколы, вырывы), обработочные риски, повторяющиеся впадины, выступы.

1.9 Обоснование линейных и угловых параметров режущего инструмента. Выбор типового инструмента (графическая часть), подготовка его к работе (балансировка, правка, вальцевание, заточка, доводка, и т.д.)

При поперечной распиловке перерезание волокон производится внешней боковой режущей кромкой. Действие короткой режущей кромки сводится лишь к сниманию (отрыву) и удалению стружек, перерезаемых боковыми кромками. Боковая кромка в этом случае должна быть наклонена не назад, как в зубьях при продольной распиловке, а вперёд, так как при таком положении создаётся необходимый подпор волокнам. В противном случае вследствие малой сопротивляемости древесины в направлении, нормальном к длине волокон, последние, поднимаясь под воздействием лезвия зуба, будут рваться и вызывать далеко идущие от зоны резания деформации (мшистый рваный распил).

Для лучшего угла резания передняя режущая и задняя грани должны иметь косую заточку под углом φ (заднюю грань можно затачивать под углом, меньшим φ), вследствие чего угол резания боковой режущей кромки становится меньше 90° (рис. 3).

Рис. 3. Геометрия зуба для поперечной распиловки древесины.


Стружкообразование при поперечной распиловке происходит следующим образом. Выступающие вперёд боковые режущие кромки последовательно разведённых зубьев перерезают волокна древесины, и по мере углубления в толщину древесины короткая режущая кромка (с углом наклона к боковой поверхности ε), односторонне действуя частью своей длины на подрезанный с обеих сторон элемент древесины, отрывает его от основного слоя. Короткая режущая кромка не прорезает волокна мягкой древесины, так как не имеет соответствующих этой цели углов резания, а отрывает их в силу малой сопротивляемости волокон отрыву в поперечном направлении.

Боковое лезвие зуба при подрезании волокон вызывает деформацию последних, распространяющуюся на определенную длину в зоне ширины стружки. Величина этой деформации (надрыва стружки) от воздействия бокового лезвия зависит от величины подачи па зуб, соотношения между шириной пропила и толщиной пилы и угла ε - угла наклона короткой режущей кромки к плоскости пилы (см. рис. 3). В частности, при малых величинах подачи эта деформация сравнительно мала.

На величину расхода мощности на резание влияет глубина подреза древесины, при которой воздействие короткой режущей кромки на подрезанный массив древесины приводит к отделению стружки. Несомненно, данное обстоятельство зависит от угла наклона ε короткой кромки.

Так, в случае бóльшего угла ε при малых подачах и распиловке твёрдых пород короткая режущая кромка при внедрении в древесину будет отрывать волокна в зоне пропила при меньшей глубине подреза, что облегчает стружкообразование и приводит к уменьшению сил трения и к общему уменьшению сил резания. При резании мягких пород и больших подачах на зуб, наоборот, следует уменьшать воздействие короткой режущей кромки на волокна древесины в зоне пропила (т. е. уменьшать угол ε), так как в этом случае деформация древесины при подрезании боковыми кромками облегчает работу стружкообразования короткой режущей кромкой.

Таким образом, при проектировании зуба следует стремиться к улучшению условий резания боковой режущей кромкой путём придания зубу формы с соответствующими углами δ и φ (в зависимости от технологических свойств распиливаемой древесины) и стараться соблюдать необходимый угол ε за счёт значения углов δ и φ.

Углы косых заточек граней зубьев колеблются в пределах: для мягких пород 25÷30°, для твёрдых 10÷15°. При этом косая заточка задней грани выполняется с меньшим углом наклона. По данным ЦНИИМОД (канд. техн. наук П. П. Есипова) для нашего оборудования угол косой заточки зубьев должен быть увеличен до 45° [2, с. 99-101].

По ГОСТ 980—69 на дисковые пилы для поперечной распиловки рекомендуются (для нашего случая) профиль зуба (см. рис. 4) со следующими угловыми параметрами: γ=-25°; β=50°; α=60°; δ=115° [4, с. 150].

Минимальный диаметр пилы рассчитаем по [3] (27):

Dmin=2*(h+r+10), (1.1)

где h – высота пропила;

r – радиус шпиндельной насадки.

Dmin=2*(70+50+10)=260 мм.

Начальный диаметр дисковой пилы определяем по [2] (25):

D=Dmin+2∆, (1.2)

где ∆=25 мм - запас на износ по радиусу.


D =260+2*25=310 мм.

Толщину диска пилы найдём по [2] (26):

S=(0,08÷0,12)

=0,1*
=1,8 мм. (1.3)

По ГОСТ 980-80 принимаем пилу 3421-0321 исполнения II с диаметром D=400 мм, толщиной диска S=2,0 мм, диаметром внутреннего отверстия d=50 мм, числом зубьев z=72.

Величина развода зубьев 0,4 мм по [8] с. 179.

Из всего выше сказанного выбираем следующие угловые параметры инструмента: косая заточка φ=45° по передней грани, задний угол α=60°, угол заострения β=50°, передний γ=-25°, угол резания δ=115°.