· Работа, не связанная с прикосновением к токоведущим или вращающимся частям электродвигателя и приводимом им в движение механизма, может производиться на работающем электродвигателе.
· Не допускается снимать ограждения вращающихся частей работающих электродвигателя и механизма.
· При работе на электродвигателе допускается установка заземления на любом участке кабельной линии, соединяющий электродвигатель с щитом или сборкой.
· Если работы на электродвигателе рассчитаны на длительный срок, не выполняются или прерваны на несколько дней , то отсоединенная кабельная линия должна быть заземлена также со стороны электродвигателя.
· В тех случаях, когда сечение жил кабеля не позволяет применять переносные заземления, у электродвигателей напряжением до 1000 В допускается заземлять кабельную линию медным проводником сечением не менее сечения жилы кабеля и изолировать их. Такое заземление или соединение жил кабеля должно учитываться в оперативной документации наравне с переносным заземлением.
· Со схем ручного и дистанционного управления должно быть снято напряжение, на ключах, кнопках управления должны быть вывешены запрещающие плакаты.
· На однотипных или близких по габариту электродвигателях , установленных рядом с двигателем , на котором предстоит выполнить работу , должны быть вывешены плакаты (стой напряжение ) независимо от того , находятся они в работе или остановлены.
· Для выполнения работ на электродвигателе необходимо выполнить организационно- технические мероприятия по обеспечению безопасного выполнения работ.
4 СПЕЦИАЛЬНЫЙ ВОПРОС
4.1 Цифровой сигнальный процессор тепловизионного канала
История создания тепловизоров, строящих изображение в инфракрасной области спектра, насчитывает уже более четырех десятилетий. Такая аппаратура, первоначально создаваемая для военной техники, по мере упрощения, совершенствования и удешевления завоёвывает всё новые сферы применения.
В первых тепловизорах использовался один приемный элемент, а полный кадр изображения получался с помощью оптико-механического сканирования пространства. В связи с трудностями создания быстродействующих надежных малогабаритных систем оптико-механического сканирования для повышения разрешения изображения стали применять несколько объединенных приемников в виде линейки или небольшой матрицы. К настоящему времени совершенствование технологии производства позволило создавать матричные приемники большой размерности, что дало возможность полностью отказаться от использования оптико-механического сканирования и использовать один многоэлементный приёмник (матрицу приёмников) в «смотрящем» режиме.
Для получения качественного изображения, поступающего с матрицы большой размерности, необходимы «выравнивание» характеристик чувствительности каждого приемника матрицы, интерполяция дефектных приемников, а также регулировка яркости и контраста в пределах выбранного динамического диапазона температур наблюдаемых объектов.
Использование матрицы большой размерности, ввиду особенностей формирования сигнала с фотоприемников, требует применения специальных алгоритмов и высокопроизводительного спецпроцессора, обеспечивающих высокоточную обработку сигналов, поступающих с матрицы, при большом объеме потока информации в реальном масштабе времени. Применение методов и средств цифровой обработки сигналов позволяет создать такой вычислитель с приемлемыми массой, габаритами и энергосбережением.
Например, в тепловизоре на основе болометрического матричного фотоприемника, цифровой блок которого разрабатывает НТЦ «Модуль», допускается 5 %-я неравномерность чувствительных элементов и 2 % дефектных элементов. На выходе системы после электронной обработки неравномерность по чувствительности не должно превышать 0.2%, а количество дефектных элементов изображения не допускается вовсе.
Упрощенная схема тепловизора показана на рис.4.1 Считываемые с элементов матрицы сигналы усиливаются, оцифровываются, подвергаются обработке и преобразуются в стандартный видеосигнал изображения.
Модуль аналоговой обработки (МАО) осуществляет аналого-цифровое преобразование напряжения, снятого с болометрического матричного фотоприемного устройства (МФПУ), и передачу полученного кода в цифровой сигнальный процессор (ЦСП). Во время работы МАО производит компенсацию разбаланса моста для каждого элемент матрицы в реальном масштабе времени. МАО формирует верхние и нижние опорные напряжения для питания моста.
ЦСП получает 12-разрядный код оцифрованного сигнала с каждого элемента матрицы, выдает синхросигналы в МАО для формирования управляющих воздействий на МФПУ, загружает при инициализации коды в память МАО, выдает сформированный цифровой телевизионный сигнал в генератор телевизионного сигнала (ГТС). В процессе калибровки и настройки системы приема тепловизионного сигнала ЦСП выполняет процедуру формирования кодов компенсации пьедестальных напряжений и расчет поправок для точной «установки нуля», формирует поправочные коэффициенты для учета разброса по чувствительности, вычисляет таблицы для замены дефектных элементов матрицы на интерполированное значение. В штатном режиме работы ЦСП вычисляет значение полезного сигнала с учетом поправок и поправочных коэффициентов, заменяет значения кодов неисправных элементов на интерполированные, согласует значение видеосигнала с диапазоном входного сигнала монитора, дополняет исходный кадр размерностью 320*240 до кадра 384*288 строками со служебной информацией. При задании соответствующих режимов ЦСП осуществляет процедуру накопления кадров в интервале от 2 до 16, формирует изображение перекрестия на мониторе, преобразует изображение в негативное, формирует изображение в условных цветах и тонах.
В настоящее время НТЦ «Модуль» изготовил функциональный макет ЦСП для обеспечения и верификации реализации на процессоре Л1879ВМ1 алгоритмов обработки в реальном масштабе времени сигналов с матричного фотоприёмника, разработанного заказчиком.
Вычислительный модуль служит для инициализации системы обработки изображения при включении питания, задания режимов работы по командам, полученным по последовательному каналу RS-232, а также настройки и калибровки системы. В зависимости от установленного режима (минимальной или покадровой задержки) изменяется состав выполняемых процессором функций обработки изображения. В режиме минимальной задержки процессор готовит для интерфейсного модуля значения уровня серого и коэффициента передачи для следующего кадра (по данным текущего кадра) и загружает их в память ИМ. Дополнительной задержки на обработку изображения при этом не вносится. В режиме покадровой задержки процессор, кроме перечисленного выше, занимается также при необходимости накоплением кадров, расцвечивает в условные цвета или для черно-белого изображения кодирует в условных тонах изображение и только затем пересылает данные в видеопамять. При этом задержка составляет 40 мс.
Интерфейсный модуль служит для предварительной обработки данных, принимаемых от аналогового. В ИМ находится контроллер последовательного канала, видеокодер, память для загрузки ПЛИС (типа флэш). Контроллер предварительной обработки принимаемого сигнала в режиме калибровки передает без изменения эти данные в процессор. При штатной работе контроллер учитывает поправочные коэффициенты, заменяет значения дефектных элементов матрицы (поправочные коэффициенты и таблица дефектных элементов хранятся в ОЗУ), корректирует уровень серого и коэффициент усиления (загружаются перед началом каждого кадра из процессора). В режиме с минимальной задержкой контроллер передает обработанные данные в видеопамять и затем запускает видеокодер. В режиме с покадровой задержкой окончательную обработку изображения проводит процессор. Он загружает видеопамять и запускает видеокодер. Основное отличие между режимами в том, что для режима с минимальной задержкой отсутствуют процедуры межкадрового накопления и формирования изображения в условных тонах или условных цветах.
В заключение хочется подчеркнуть, что алгоритмы и схемотехнические решения, реализованные в ЦСП, являются универсальными не только для болометрических матричных фотоприёмников, но и других типов приёмников.
5 ЭКОНОМИЧЕСКАЯ ЧАСТЬ. РАСЧЁТ СЕБЕСТОИМОСТИ ОБСЛУЖИВАНИЯ
5.1 Материальные расходы
При расчёте материальных расходов необходимо знать:
» для какого оборудования происходит расчёт;
» какому виду ремонта подлежит электрооборудование;
» какой период планово-предупредительного ремонта
электрооборудования (ППР);
» какие материалы необходимы для ремонта электрооборудования;
» какое количество материалов необходимо использовать на каждое электрооборудование при ремонте;
» цену на каждый вид материала.
Спецификация оборудования, которое подлежит ремонту приведены в табл. 5.1
Таблица 5.1 – Спецификация электрооборудования
Наименование оборудования | Дата ввода в эксплуатацию | Продолжительность | Трудоёмкость ремонта | |||
РЦ, мес | МРП, мес | МОП, мес | К.Р. чел/час | Т.Р. чел/час | ||
Токарный станок | 04.1996 | - | 27 | 3 | - | 4 |
Радиально-сверлильный стан. | 04.1996 | - | 27 | 3 | - | 5.4 |
Наждачный станок | 04.1996 | - | 27 | 3 | - | 2.6 |
Заточный станок | 04.1996 | - | 27 | 3 | - | 2.6 |
Сверлильный станок | 04.1996 | - | 27 | 3 | - | 4 |
Вентилятор | 04.1996 | - | 59.7 | 3 | - | 6.4 |
Печь сопротивления | 04.1996 | - | 12 | 2 | - | 5 |
Освещение вспомогательное | 04.1996 | - | 6 | - | - | 3.9 |
Освещение рабочее | 04.1996 | - | 6 | - | - | 3.9 |
Кран-балка | 04.1996 | - | 34 | 1 | - | 6 |
Составляем график ППР для каждого электрооборудования. Все данные вносятся в таблицу 5.2