Содержание
Введение
1 Постановка задач проекта
2 Синтез кинематической схемы механизма
3 Синтез рычажного механизма
4 Синтез кулачкового механизма
5 Синтез зубчатого механизма
6 Кинематический анализ механизма
7 Динамический анализ механизма
8 Оптимизация параметров механизма
Заключение
Список использованных источников
Введение
На современном этапе развития науки и техники большая роль отводится машиностроению, в рамках которого изучаются общие методы исследования свойств механизмов и проектирования их схем независимо от конкретного назначения машины. Это необходимо для того, чтобы повысить надежность машин и оборудования. Данная проблема рассматривается в курсе теории механизмов и машин.
Изучение дисциплины «Теория механизмов и машин» проводится с широким применением ЭВМ, а также математического и программного обеспечения.
Задачи теории механизмов и машин разнообразны. Важнейшие из них это:
- анализ механизмов;
- синтез механизмов;
- теория машин-автоматов.
Анализ механизма состоит в исследовании кинематических и динамических свойств механизма по заданной схеме.
Синтез механизма состоит в проектировании схемы механизма по заданным его свойствам.
Разделение теории механизмов на анализ и синтез носит условный характер, так как часто схему механизма и его параметры определяют путем сравнительного анализа различных механизмов, воспроизводящих одни и те же движения. Этот сравнительный анализ возможных вариантов механизма составляет теперь основу методов синтеза с использованием ЭВМ. Также в процессе синтеза механизма приходится выполнять проверочные расчеты, используя методы анализа.
Значение курса теории механизмов и машин для подготовки инженеров, проектирующих новые машины и механизмы, очевидно, так как общие методы синтеза механизмов, излагаемые в этом курсе, дают возможность находить параметры механизмов с заданными кинематическими и динамическими свойствами.
1 Постановка задач проекта
Задачи курсового проекта:
-освоение методов синтеза механизмов и определение их основных параметров;
-освоение методов кинематического и динамического анализа синтезированного механизма;
-приобретение навыков оптимизации параметров механизма методом перебора.
Исходные данные:
Тип двигателя –V-образный.
Кривошипно – шатунный механизм:
H= 120×10-3м – ход поршня;
D= 120×10-3м – диаметр поршня;
l= 0.35 – отношение длины кривошипа к длине шатуна;
mп= 3.5кг – масса поршня;
mш=9кг – масса шатуна;
w1= 250 рад/с – угловая скорость кривошипа;
νmax = 300 – максимальный угол давления.
Кулачковый механизм:
h= 10×10-3 м – высота подъема толкателя;
jy= 840– угол удаления;
тип толкателя – плоский;
закон движения – синусоидальный.
Зубчатый механизм:
u=8 – передаточное число механизма.
Требуется:
-синтезировать кривошипно-шатунный, кулачковый и зубчатый механизмы;
-произвести динамический анализ кривошипно - шатунного механизма;
-определить оптимальные параметры механизма, чтобы обеспечивался заданный закон изменения скорости поршня.
2 Синтез кинематической схемы механизма
Кинематическая схема механизма включает основные подсистемы автомобиля: кривошипно-шатунный и газораспределительный механизмы.
Кривошипно-шатунный механизм включает кривошип, шатун, поршень.
Схема кривошипно – шатунного механизма представлена на рисунке 2.1.
Рисунок 2.1 - Схема кривошипно – шатунного механизма
Газораспределительный механизм включает в себя кулачок и плоский толкатель.
Схема газораспределительного механизма представлена на рисунке 2.2.
Рисунок 2.2 - Схема газораспределительного механизма
3 Синтез рычажного механизма
Синтез рычажного механизма предусматривает определение основных параметров кривошипно-шатунного механизма – длины кривошипа, хода поршня, а также определение зависимости перемещения, скорости и ускорения поршня от угла поворота коленчатого вала.
Для определения основных параметров кривошипно-шатунного механизма рассмотрим рисунок 3.1.
Рисунок 3.1 - Схема кривошипно – шатунного механизма V – образного двигателя с углом развала 900
Оси координат удобнее всего направить вдоль цилиндров, а для упрощения расчетов по определению параметров КШМ отбросим второй цилиндр и дальнейшие рассуждения, будем вести относительно одного цилиндра (рисунок 3.2) .
Рисунок 3.2 - Схема одного цилиндра КШМ
Определим неизвестные параметры r и l КШМ, используя формулы:
r=0.5H (3.1)
l=r/λ (3.2)
где r - длина кривошипа;
l - длина шатуна.
Численные значения параметров r и l определим, записав формулы 3.1 и 3.2 в программе MathCAD. Получаем:
r = 0.03 м;
l = 0.171 м.
Необходимое условие проворачиваемости звеньев выполняется при угле давления νmax равным 30 градусам.
Параметры кривошипно – шатунного механизма заносим в таблицу 3.1.
Таблица 3.1 - параметры кривошипно-шатунного механизма
Параметр | Значение | Размерность |
H | 120×10-3 | м |
D | 120×10-3 | м |
r | 30×10-3 | м |
l | 171×10-3 | м |
λ | 0.35 | - |
νmax | 30 | град. |
4 Синтез кулачкового механизма
Основными геометрическими параметрами кулачкового механизма с поступательно движущимся толкателем являются радиус кулачка и эксцентриситет.
Определение радиуса кулачка, а также дальнейшие вычисления будем производить, используя программу MаthCAD.
Определим радиус кулачка по формуле (4.1):
r0=la(φ1)-S(φ1)l (4.1)
где a(φ1) – минимальное значение функции ускорения толкателя по углу поворота кулачка φ1;
S(φ1) – значение перемещения толкателя при угле поворота кулачка φ1.
Значение эксцентриситета, в случае с плоским толкателем, не влияет на определение профиля кулачка, поэтому его находить не будем.
В механизме с плоским толкателем координаты конца радиус - вектора r1 определяются по формулам:
xА=V(j) (4.2)
yА=r0+ S(j) (4.3)
где V(j) – значение скорости толкателя при угле поворота φ1.
Величину радиус – вектора r1 определим по формуле:
r1(j1)=(xА (j)2 + уА (j)2)1/2 (4.5)
С учетом формул 4.2 и 4.3 получаем выражение для радиус – вектора r1
r1(j) (V(j)2+ (r0 + S(j))2)1/2 (4.6)
Для определения координат профиля кулачка необходимо спроецировать радиус - вектор на оси координат при повороте его на угл равный 360 градусов. Следовательно координаты профиля кулачка xК и уК будут равны:
xК(j)=r1(j)cos(j) (4.7)
yК(j)=r1j) cos(j) (4.8)
Построение профиля кулачка будем проводить в среде MathCAD. Для написания программы по построению профиля сначала введем переменные, которые заданы по условию:
h = 10×10-3 м
jу = 840
Для построения графиков зависимостей ускорения, скорости и перемещения толкателя от угла поворота кулачка зададим угол j и его шаг:
j =0,π/100..2π
Далее с помощью программы опишем закон изменения ускорения толкателя от угла поворота j:
a(j)= (h×2π/jу2 )×sin(2π×j/ jу) if j< jу
- (h×2π/jу2 )×sin(2π×j/ jу) if jу ≤j≤2 jу
0 otherwise
Для определения значения угла φ1 , в котором значение функции ускорения минимальное воспользуемся функцией Minimise, начальное значение угла φ1 примем равное нулю:
φ1 = 0 φ1 = Minimise(а, φ1 )
Функцию скорости толкателя от угла поворота j V(j) найдем с помощью интегрирования функции ускорения a(j). Затем проинтегрировав функцию скорости найдем функцию перемещения S(j). Интегрирование проводим в пределах от 0 до 2jу. Для этого cоставляем программы:
V(j)= ∫ a(j)dj if j ≤2jу
0 otherwise
S(j)= ∫ V(j)dj if j ≤2jу0 otherwise
Определив значения угла φ1 , а также функции скорости и перемещения толкателя и последовательно подставляя эти значения в выражения 4.1, 4.2, 4.3, 4.6 ,4.7 и 4.8 получаем координаты профиля кулачка.
Профиль кулачка найдем, построив график функции Pr(j) от угла j :
Pr(j) = (xК(j)2 + yК(j)2)1/2
Все вычисления и графики приведены в приложении А.
5 Синтез зубчатого механизма
Зубчатый механизм включает в себя планетарную и вальную передачи. Синтез зубчатого механизма заключается в определении чисел зубьев всех колес и передаточного числа планетарного механизма.
Схема зубчатого редуктора представлена на рисунке 5.1.
Рисунок 5.1 – Схема зубчатого механизма
По условию задано передаточное число всего механизма, равное произведению передаточного числа планетарной и вальной передачи:
U = Uпм× Uвп U = 8
Выразим передаточное число всего механизма через числа зубьев с применением формулы Виллиса:
U= 1 – ( – z2/z1)×(z4/z3))×z6/z5 (5.1)
Примем передаточное число планетарного механизма равным Uпм = 4, а вальной передачи Uвп = 2. Тогда: