Смекни!
smekni.com

Разработка и внедрение системы воспламенения пылеугольного факела с использованием электродуговых (стр. 3 из 3)

Как видно из рис.3.1, безразмерная длина участка зажигания с ростом относительной электрической мощности плазматрона уменьшается, приближаясь к единице при E=2,4. Максимальная температура с увеличением Е возрастает от 15000С, что свидетельствует об интенсифицирующем воздействии плазменного источника, и подтверждается также значительным снижением мехнедожога; для АШ q4 снижается с 15 до 4,5%, для ЭУ с 3,5 до 1,3 , и для БУ с 7 до 4%, т.е. в среднем потери тепла с мехнедожогом уменьшаются в 2-3 раза.

По результатам экспериментов могут быть рекомендованы значения удельных энергозатрат, лежащие в интервале 0,08≤ Qуд≤0,12 кВтч/кг угля, что полностью согласуется с результатами расчётов.

Результаты стендовых испытаний воспламенения углей и обобщения вольтамперных характеристик (ВАХ) плазматронов легли в основу проекта промышленной СБР для Усть-Каменогорской ТЭЦ.

(4)Технические решения по компоновке СБР с электро- тепломеханическим оборудованием ТЭС и результаты промышленных испытаний плазменной растопки котлов ЦКТИ-75, ст. № 9 и ст. № 10 Усть-Каменогорской ТЭЦ.

Безмазутная растопка котлов ЦКТИ-75 Усть-Каменогорской ТЭЦ проводилось на карагандинских угля со следующими характеристиками: теплота сгорания 4290 ккал/кг, зольность 20%, влажность 18% и выход летучих 36%. Котёл оборудован двумя растопочными муфельными предтопками с расходом угля до 1,5 т/ч. В муфельных горелках обоих котлов были смонтированы плазмотроны с камерами ЭТХПТ.

Растопку котлов производили из холодного состояния. Угольную пыль на безмазутную растопку подавали из промбункера (R90=37%).После включения плазмотронов в камеры ЭТХПТ подавали уголь с плавным увеличением расхода от 0,75 до 1,5 т/ч. Мощность плазмотрона 65 кВт, ток 260 А и напряжение 250 В. При этом наблюдалось устойчивое воспламенение и интенсивное горение пылеугольного факела на выходе из муфельных предтопков. Температура факела 1200-13000С при расходе воздуха на один муфель около 2000 м3/ч. После выхода муфелей на стационарный тепловой режим плазматроны отключались, а подача аэросмеси с воспламенением в муфеле продолжалась до повышения давления в барабане котла не менее 27 атм. Затем котёл переводили на работу трёх основных турбулентных горелок. Время растопки котла 3,5 часа. Скорости увеличения давления (≈0,13 атм./мин) и температуры пара (≈2 град/мин) соответствовали режимной карте котла ЦКТИ-75 при его растопке на мазуте. Температура питательной воды после завершения растопки составляет 1320С, уходящих газов -1500С и перегретого пара - 4300С.

Относительные затраты электроэнергии на плазмотрон составили 0,6% от тепловой мощности муфельной горелки. Многократные испытания безмазутной растопки котлов ЦКТИ-75 подтвердили высокую эффективность плазменного воспламенения аэросмеси в муфельном предтопке, по сравнению с существующей технологией растопки. В 1995 г. Плазменные системы безмазутной растопки котлов были сданы в постоянную эксплуатацию на Усть- Каменогорской ТЭЦ.

(5) Технико– экономическое обоснование эффективности применения плазменной системы растопки котлов в основных энергосистемах Казахстана. Определено, что в 7 основных энергосистемах находится в эксплуатации ≈215 пылеугольных котлов с общей паропроизводительностью 63795 т/ч. Эти котлы выбраны на основе анализа их пригодности для внедрения безмазутной технологии растопки. В соответствии с основной концепцией плазменной технологии растопки в среднем 30% пылеугольных горелок котла оснащается плазматронами. Минимальное количество систем безмазутной растопки, требуемое для оснащения 215 пылеугольных котлов, составляет около 500 штук. Для их серийного выпуска необходима организация промышленного производства.

Методика расчёта экономии мазута при внедрении СБР на ТЭС. Методика базируется на принципе замещения мазута эквивалентным по теплоте сгорания количеством угля и учётом стоимости электроэнергии, затрачиваемой на плазматроны за время растопки. Также учитывается стоимость СБР, ресурс которых при среднем числе растопок котла 20 в год составляет 3 года.

Поскольку стоимость угля, которым замещают мазут, на порядок меньше стоимости самого мазута, стоимость одного комплекта СБР ≈20000$, то экономическая эффективность достигает значительной величины 40-50$ на 1 т. Замещаемого углём мазута.

Результаты расчётов экономической эффективности для основных энергосистем, показали, что суммарная экономия составляет около 30 млн. $ в год.

Основные результаты исследования

1. Посредством термодинамического анализа процессов ЭТХПТ основных энергетических углей обоснована научно-техническая целесообразность применения на ТЭЦ плазменных систем безмазутной растопки пылеугольных котлов.

2. Расчёты с помощью модифицированного программного комплекса АСТРА-4 показали, что необходимая мощность плазматрона для безмазутного воспламенения факела составляет 50-200 кВт, что позволяет разработать универсальный плазмотрон с регулируемой в этих пределах мощностью.

3. Расчётным путём выявлены и экспериментально подтверждены оптимальные теплотехнические параметры процесса ЭТХПТ: температуры (1200-1500К), концентрация пыли в аэросмеси (0,4-0,6 кг/кг) и суммарный расход горючих газов (50-60% от органической массы угля)

4. Проведённые эксперименты по изучению электрических и тепловых параметров плазменной системы безмазутной растопки и вольтамперных характеристик плазматрона позволили оптимизировать конструкцию СБР.

5. Разработаны и освоены технологические схемы совместного функционирования плазменного и станционного оборудования при безмазутной растопке пылеугольных котлов на Усть-Каменогорской ТЭЦ.

6.Разработана техдокументация на изготовление плазменных СБР с электродуговым плазматроном, необходимая для организации серийного производства плазменно-энергетического оборудования в Казахстане.