Последовательность обработки результатов многократных измерений следующая:
- исправление результатов наблюдений, если это возможно (внесение поправок);
- вычисление оценки параметра положения центра выборки Хц (среднее арифметическое, медиана или другая оценка);
- вычисление выборочного СКО оценки параметра положения центра по формуле
σ(Хц) =
- определение границ доверительного интервала для случайной погрешности
∆сл= ±tpnσ(Хц).
Следует помнить, что при многократных измерениях уменьшаются только случайные погрешности, а систематические остаются без изменения и должны суммироваться со случайными. Следующие этапы обработки данных:
- сравнение ∆сл с неисключенными систематическими составляющими погрешности измерений и выявление значимых составляющих;
- суммирование неисключенных систематических погрешностей
Δ СΣ = К
- определение суммарной погрешности Δ Σ =
.Результат измерений записывается в виде Хц± Δ Σ, Рд.
Пример. При многократном измерении тока получены значения в мА: 98, 100, 97, 101, 99, 102, 103. Определить доверительные границы для истинного значения измеряемой величины с вероятностью Р = 0,95 (tp= 2,45).
Параметр положения центра выборки Хц (среднее арифметическое) Хц =100 мА.
СКО оценки параметра положения центра
σ(Хц) =
=Границы доверительного интервала для случайной погрешности
∆сл= ±tpσ(Хц) = ±(2,45∙0,816) ≈ ±2 мА.
Результат измерений: 100±2 мА, Р = 0,95.
Результат косвенного измерения определяется расчетом по известной функции Ζ = f(х1, х2, …) и измеренным значениям аргументов хi. Так как каждое значение хi измерено с погрешностью, задача расчета погрешности результата измерений сводится также к суммированию погрешностей измерения аргументов. Отличие косвенных измерений состоит в том, что в зависимости от вида функции вклад отдельных аргументов в результат и его погрешность может быть различным. Поэтому при расчете погрешности результата косвенных измерений вводятся коэффициенты влияния аргументов на результат измерений, представляющие собой частные производные функции по соответствующим аргументам:
Δ(Ζ) =
(∂f/∂хi)Δ(хi).Для дисперсий:
σ²(Ζ) =
(∂f/∂хi)² σ²(хi).Метод частных производных правомерен для суммирования абсолютных погрешностей линейных функций, в которые аргументы входят в первой степени и коэффициенты влияния ∂f/∂хi не зависят от аргументов. Для нелинейных функций проводится сначала логарифмирование (или другая операция линеаризации функции, в общем случае – разложение в ряд Тейлора), затем дифференцирование.
Пусть Ζ = ∏( хª1, хⁿ2, …).
Логарифмирование: lnΖ = alnх1 +nlnх2, …
Дифференцирование: dΖ/Ζ = a(dх1/х1)+ n(dх2/х2) +…, после чего, перейдя к малым приращениям (погрешностям), получим формулу расчета относительных погрешностей: δ(Ζ) = a δ(х1) + n δ(х2) +…
Для дисперсий: σ²( δ Ζ) =
bj² σ²( δхj).Итак, расчет погрешности косвенного измерения проводится в два этапа: 1) вывод формулы для расчета абсолютной погрешности (дифференцирование) или относительной погрешности (логарифмирование + дифференцирование) в зависимости от вида функции связи измеряемых величин; 2)расчет погрешности в соответствии с полученной формулой по правилам суммирования составляющих. При этом, если составляющие погрешности рассматриваются как случайные величины, знаки, полученные при дифференцировании, не учитываются.
Пример. Оценить значение и погрешность измерения мощности, поглощаемой на сопротивлении R = 100 Ом при напряжении U = 10 В. СКО относительных погрешностей измерений напряжения и сопротивления составляют: σ(δU) = 0,5%, σ(δR) = 1%.
Поглощаемая мощность W = U²/ R = 1Вт.
Для оценки погрешности измерения проведем линеаризацию функции:
lnW= 2lnU- lnR.
Тогда относительная погрешность измерения мощности δW= 2δU+δR, а дисперсия относительной погрешности: σ²(δW) = 4 σ² (δU)+σ² (δR)
СКО относительной погрешности σ(δW) =
≈ 1,414%Приняв доверительную вероятность Р=0,9 (tp=1,6), запишем результат измерений:
W = 1 Вт; δ = ±2,3%, Р = 0,9.
7. Метрологическое обеспечение. Закон «Об обеспечении единства измерений». Структура и функции метрологических служб
Обеспечение единства измерений - деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с законодательными актами, правилами и нормами, установленными национальными стандартами и другими нормативными документами по обеспечению единства измерений.
Содержание метрологической деятельности более полно раскрывает понятие метрологическое обеспечение – установление и применение научных и организационных основ, технических средств, правил и норм для достижения единства и требуемой точности измерений.
Метрологическое обеспечение | |
Научная основа | Теоретическая и прикладная метрология |
Организационная основа | Государственная метрологическая служба, метрологические службы федеральных органов исполнительной власти и юридических лиц |
Нормативно-правовая основа | Закон «Об обеспечении единства измерений», Постановления Правительства, нормативные документы ГСИ (Государственной системы обеспечения единства измерений) |
Техническая основа | Государственные эталоны, системы передачи размеров единиц величин (поверочные схемы), парк рабочих средств измерений |
Государственное регулирование метрологической деятельности осуществляется на основе закона «Об обеспечении единства измерений», впервые принятого в 1993 и в новой редакции – в 2008 году (Федеральный Закон от 26.06.2008 №102-ФЗ). В законе определены формы государственного регулирования, требования, порядок и правила практически по всем вопросам метрологической деятельности и основам метрологического обеспечения.
В главе 1 «Общие положения» установлены цели принятия и сфера действия, даны определения основных понятий метрологии, применяемых в тексте закона.
Целями Федерального Закона являются:
1) установление правовых основ обеспечения единства измерений;
2) защита прав и законных интересов граждан, общества и государства от отрицательных последствий недостоверных результатов измерений;
3) обеспечение потребности граждан, общества и государства в получении объективных, достоверных и сопоставимых результатов измерений, используемых в целях защиты жизни и здоровья граждан, охраны окружающей среды, животного и растительного мира, обеспечения обороны и безопасности государства, в том числе экономической безопасности;
4) содействие развитию экономики и научно-техническому прогрессу.
Государственное регулирование обеспечения единства измерений распространяется на измерения, выполняемые при осуществлении деятельности:
- в области здравоохранения, ветеринарии, охраны окружающей среды;
- по обеспечению безопасных условий и охраны труда, производственного контроля за соблюдением требований промышленной безопасности к эксплуатации опасного производственного объекта;
- в области обороны и безопасности государства, обеспечения безопасности при чрезвычайных ситуациях;
- торговли и товарообменных операций, расфасовки товаров;
- государственных учетных, банковских, налоговых и таможенных операций, услуг почтовой связи и электросвязи;
- в области геодезии, картографии и гидрометеорологии;
- оценки соответствия продукции и иных объектов обязательным требованиям, мероприятий государственного контроля (надзора);
- измерений, проводимых по поручению суда, органов прокуратуры, государственных органов исполнительной власти;
- проведении официальных спортивных соревнований.
Глава 2 имеет заглавие «Требования к измерениям, единицам величин, эталонам единиц величин, стандартным образцам, средствам измерений».
Измерения, относящиеся к сфере государственного регулирования, должны осуществляться по аттестованным методикам измерений, с применением средств измерений утвержденного типа, прошедших поверку. Результаты измерений должны быть выражены в единицах величин, допущенных к применению в Российской Федерации.
Закон допускает к применению единицы величин Международной системы единиц, принятые Генеральной конференцией по мерам и весам и рекомендованные МОЗМ. Правительством РФ могут быть допущены к применению внесистемные единицы.