Смекни!
smekni.com

Метрология и метрологическое обеспечение (стр. 4 из 18)

Характеристики чувствительности СИ к влияющим величинам.

Влияющие величины (ВВ), характеризующие условия измерений, вызывают определенные изменения выходного сигнала или показаний СИ. В ГОСТ 8.009-84 предусмотрено два способа нормирования характеристик чувствительности СИ к ВВ: функцией влияния Ψ(ξί), либо пределом допускаемого изменения характеристики (например, погрешности) при изменении ВВ в заданном интервале (предел допускаемого значения дополнительной погрешности). Дополнительная погрешность по характеру своему чаще всего проявляется как систематическая погрешность. Нормируемые характеристики связаны между собой односторонней зависимостью: ∆(ξί)max= Ψ(ξί)∙(ξί)max. Обратное преобразование, то есть определение функции влияния по пределу дополнительной погрешности, некорректно.

Динамические характеристики

Различают полные и частные динамические характеристики (ДХ). К полным относятся функции динамического преобразования, функции связи между входом и выходом СИ в динамическом режиме измерений:

-передаточная функция К(јω)=У(јω)/Х(јω) – отношение операторных изображений сигналов на выходе и на входе СИ;

-переходная характеристика h(t) – реакция СИ на скачок измеряемой величины;

-импульсная переходная характеристика g(t) – реакция СИ на единичный импульс измеряемой величины;

-совокупность АЧХ А(ω) и ФЧХ φ(ω).

Примеры частных ДХ: время установления показаний (tу), постоянная времени Т (по переходной характеристике), АЧХ А(ω), значение резонансной частоты собственных колебаний ωо, верхний предел частотного диапазона измерений f max, и другие.

Для известных видов сигналов измеряемых величин (например, синусоидального) может быть нормирована динамическая погрешность.

Характеристики связи СИ с объектом измерений

К числу н.м.х. отнесены:

- входной Ζвх и выходной Ζвых импедансы (сопротивления);

- неинформативные параметры входного сигнала.

4. Погрешности и классы точности средств измерений. Погрешности технических измерений

Наряду с нормированием полного комплекса н.м.х. по ГОСТ 8.009-84 для СИ массового применения практикуется упрощенное нормирование м.х. в виде класса точности по ГОСТ 8.401-80.

Класс точности – обобщенная характеристика типа средств измерений, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность. Классы точности удобны для сравнительной оценки при выборе СИ, но недостаточны для достоверной оценки погрешностей каналов измерительной системы, введения поправок в результаты измерений с целью исключения систематических составляющих основной и дополнительных погрешностей, расчета погрешностей динамических измерений.

Пределы допускаемых основной и дополнительных погрешностей выражают в форме абсолютных, относительных или приведенных погрешностей.

Абсолютная погрешность – разность между показаниями прибора и истинным значением измеряемой величины, выраженная в единицах измеряемой величины. Пределы допускаемой абсолютной основной погрешности устанавливают в виде Δ = ±а или Δ = ±(а+bx).

Если абсолютная погрешность СИ во всем диапазоне измерений ограничена постоянным пределом ±а, такая погрешность называется аддитивной. Погрешность или составляющая погрешности, возрастающая пропорционально значениям измеряемой величины (Δ = ±bx), называется мультипликативной.

Абсолютная погрешность сама по себе не дает четкого представления о точности СИ, необходимо ее соотнесение с размером измеряемой величины. Поэтому чаще устанавливают пределы допускаемой приведенной погрешности γ = (Δ/ХN)100 = ±p,%. Реально приведенная погрешность характеризует погрешность только в одной точке диапазона измерений - ХN. Для остальных значений измеряемой величины это допускаемый предел (не более). Нормирующее значение ХN задается по следующим правилам.

ХN = хк, если хн ≥ 0, то есть нулевая точка на краю или вне диапазона измерений.

ХN = max{|хн|,|хк|}, если нулевая точка внутри диапазона измерений

ХN = | хк - хн |, для СИ с условным нулем.

ХN = хном, если установлено номинальное значение (для меры).

Наиболее наглядной характеристикой является предел относительной погрешности δ = (Δ/х)100 = ±q,%. При мультипликативной полосе погрешностей δ=±q=b. При одновременном присутствии аддитивной и мультипликативной составляющих предел относительной погрешности нормируется двучленной формулой

Δ = 100( а+bx)/х = γнк/х|+ γs = γк + γн (|хк/х|-1) = ±[с+d(|хк/х|-1)],%.

Физический смысл: с – приведенная к |хк| погрешность в конце шкалы (γк), d – приведенная погрешность в начале шкалы (γн). с = b+d; d = а/|хк|.

ГОСТ 8.401-80 определил и нормируемые числовые значения пределов допускаемых погрешностей р, q, c, d, которые должны выбираться из ряда:1· 10ⁿ; 1,5· 10ⁿ; (1,6· 10ⁿ); 2· 10ⁿ; 2,5· 10ⁿ; (3· 10ⁿ); 4· 10ⁿ; 5· 10ⁿ; 6· 10ⁿ (n = 1; 0; -1; -2 и т.д.).

Примеры обозначения в документации на СИ

γ = ±0,5% класс точности 0,5 0,5 или 0,5

δ = ±0,5% класс точности 0,5

δ = ±[0,02+0,01(|хк/х|-1)]% класс точности 0,02/0,01 0,02/0,01

Погрешность результата измерений имеет три источника и три составляющих: инструментальная погрешность Δи, включающая погрешности СИ, нормируемые в комплексе м.х. (основная Δо, дополнительные Δξ и динамическая Δτ), а также погрешность, возникающая при взаимодействии СИ с объектом (Δimp); методическая погрешность Δм, обусловленная методом измерений; субъективная или личная (погрешность считывания) Δл, обусловленная действиями оператора и его влиянием на объект, условия и средство измерений.

В частности, личная погрешность оператора средней квалификации при считывании показаний прибора с равномерной шкалой принимается Δл = 0,2 Хцд (0,2 цены деления).

Источниками методической погрешности являются:

1.Отличие фактически измеряемой величины от подлежащей измерению – погрешность модели объекта измерения.

2. Погрешность передачи размера измеряемой величины от объекта к СИ (отличие значений измеряемой величины на входе СИ и в точке «отбора» на объекте).

3. Погрешности обработки данных (отличие алгоритма вычислений от функции, связывающей результат измерений с измеряемой величиной).

Общие правила и формы представления результатов и погрешностей измерений приведены в рекомендации МИ1317-2004.

Результат измерений представляют именованным (неименованным в обоснованных случаях) числом совместно с характеристикой приписанной погрешности или статистической оценкой погрешности. При массовых технических измерениях указывают приписанную, заранее рассчитанную погрешность, при исследовательских – статистическую оценку погрешности.

Результат измерений могут сопровождать:

- точечные характеристики погрешности (СКО погрешности измерения σΔ или характеристики неисключенной систематической σ[Δс] и случайной σ[Δ°] составляющих погрешности), если результат измерений подлежит дальнейшей обработке (например, расчету результата и погрешностей косвенных или других функциональных измерений);

- интервальная характеристика погрешности - границы, в пределах которых погрешность измерений находится с заданной вероятностью, если результат измерений является окончательным.

Характеристики погрешности указывают в единицах измеряемой величины (абсолютная Δ) или в процентах от результата измерения (относительная δ).

Примеры записи результатов измерений:

Расход жидкости 10,75 м3/с; |∆н|=|∆в|=0,15 м3/с; Рд=0,95, или 10,75 м3/с; Δ=±0,15 м3/с; Рд=0,95, или 10,75 м3/с; -0,12 ≤ Δ ≤ 0,18 м3/с; Рд=0,95.

Электрическое напряжение 220,0 В; δ=±1%; Рд=0,95, или 220,0 В; σ[Δс]=0,2 В; σ[Δ°]=0,1 В.

Допускается (для исследовательских измерений) представление результата измерений доверительным интервалом, покрывающим с указываемой доверительной вероятностью истинное значение измеряемой величины, например: температура от 260 до 280 °С, Рд=0,95. При этом погрешности не указываются.

Характеристики погрешности выражают числом, содержащим не более двух значащих цифр: если число начинается с цифр 1 или 2, то в нем оставляют две значащих цифры с округлением в большую сторону, если число ≥3, оно округляется до одной значащей цифры по общим правилам округления. Пример – ряд числовых значений классов точности.

Результат измерения округляется до того же десятичного знака, которым оканчивается округленное значение абсолютной погрешности измерения. Округление проводится только в окончательной записи.

5. Методики выполнения измерений. Выбор средств измерений

Методика выполнения измерений – совокупность операций и правил, выполнение которых обеспечивает получение результатов измерений с установленной погрешностью (неопределенностью). Следует различать МВИ как приведенное выше понятие, и МВИ как отдельный документ, содержащий описание и все необходимые данные для реализации МВИ. Общие положения и требования к их разработке и метрологической аттестации установлены в ГОСТ Р 8.563-96 «ГСИ. Методики выполнения измерений».

Документ на МВИ должен содержать разделы:

- вводную часть (назначение и область применения МВИ);

- характеристики погрешности измерений;

- средства измерений, вспомогательные устройства и др.;