ИСПОЛЬЗУЕМЫЕ УСЛОВНЫЕ СОКРАЩЕНИЯ
КЗСК- Казанский Завод Синтетического Каучука
ТХП- трихлорпропан
ПСО- полисульфидные олигомеры
ЭХГ- этиленхлоргидрин
ПФ- параформальдегид
РЕФЕРАТ
Страниц- 64
Таблиц- 9
Рисунков - 1
Использованных литературных источников - 13
Ключевые слова:
-полисульфид,
-тиокол,
-формаль,
-этиленхлоргидрин,
-трихлорпропан,
-полиакриламид,
-трилон Б,
-поликонденсация,
-расщепление,
-коагуляция,
Рассчитано и спроектировано производство тиокола марки НВБ-2 с годовой производительностью 40 000 т/год, а также был внесён ряд изменений: для снижения длительности отмывки добавляем в реактор полиакриламид, который увеличивает скорость осаждения дисперсии. Время отмывки сокращается. Благодаря этому возрастает производительность реактора, уменьшается количество аппаратов и увеличивается производительная мощность.
СОДЕРЖАНИЕ
ИСПОЛЬЗУЕМЫЕ УСЛОВНЫЕ СОКРАЩЕНИЯ
РЕФЕРАТ
СОДЕРЖАНИЕ
Введение
1 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ МЕТОДА ПРОИЗВОДСТВА И РАЗМЕЩЕНИЕ ОБЪЕКТА
1.1 Обоснование выбранного метода производства
1.2 Выбор района и площадки под строительсво
2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Теоретические основы процесса
2.1.1 Химические и физико-химические основы
2.1.2 Технологические основы
2.2 Характеристика сырья, полуфабрикатов и вспомогательных материалов
2.3 Характеристика готовой продукции и отходов производства
2.4 Разработка принципиальной схемы производства
2.5 Материальный расчёт производства
2.6 Описание аппаратурно-технологической схемы производства
2.7 Технологическая документация процесса
2.8 Выбор и расчёт количества основного и вспомогательного оборудования
2.9 Расчёты оборудования
2.9.1 Механический расчёт
2.9.2 Тепловой расчёт
3 АВТОМАТИЗАЦИЯ И АСУТП
4 СТРОИТЕЛЬНО-МОНТАЖНАЯ ЧАСТЬ
5 СТАНДАРТИЗАЦИЯ
6 ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ И ЭКОЛОГИЧЕСКАЯ ОЦЕНКА ПРОЕКТНЫХ РЕШЕНИЙ
7 ОРГАНИЗАЦИЯ ТРУДА И УПРАВЛЕНИЕ ПРОИЗВОДСТВОМ
8 ЭКОНОМИЧЕСКАЯ ОЦЕНКА ПРОЕКТНЫХ РЕШЕНИЙ
9 ЗАКЛЮЧЕНИЕ ПО ПРОЕКТУ
СПИСОК ИСПЛЬЗОВАНЫХ ИСТОЧНИКОВ
Ведомость проекта
ВВЕДЕНИЕ
Полисульфидные каучуки (тиоколы) получили широкое распространение. Герметики на их основе используются в автомобильной промышленности, в авиапромышленности, в судостроении и в строительстве. Также они используются в качестве компонента в смесевых твердых ракетных топливах. Срок службы полисульфидных полимеров 25 лет.
На ОАО «КЗСК» производственное подразделение для производства полисульфидных полимеров введено в действие в 1965 году. Разработчиком технологического процесса является НИИСК, генеральным проектировщиком – ГИПРОКАУЧУК.
На данный момент оборудование сильно изношено, однако в связи с большим спросом производство тиокола растет. Данное подразделение является одним из трех производителей тиокола в мире.
Историческая справка
Полисульфидные полимеры являются одним из первых видов синтетических каучуков и относятся к классу полимеров специального назначения. Отличительными особенностями вулканизатов этих полимеров являются стойкость к набуханию в различных растворителях и маслах, влаго- и газонепроницаемостью, озоностойкость и устойчивость к атмосферным воздействиям, стабильность при длительном хранении и эксплуатации, сочетающиеся с хорошей морозостойкостью. Промышленное производство полисульфидных эластомеров начато в 1929 году в США фирмой «Тиокол Кемикл Корпорэйшн».
Наиболее широкое применение получили жидкие полимеры или жидкие тиоколы на основе ди(b-хлорэтил)формаля, выпуск которых составляет 80% от общего производства полисульфидных полимеров. С целью расширения ассортимента жидких тиоколов производятся
исследования по модификации жидких тиоколов и созданию новых материалов. Получен тиоуретановый эластомер, характеризующийся лучшим комплексом физико-механических свойств и более высокой адгезией по сравнению с вулканизатами обычных жидких тиоколов.
Области применения
Области применения полисульфидных эластомеров определяются их свойствами. Тиокол FA применяют для изготовления печатных валиков, маслостойких рукавов для нефтяных продуктов и ароматических топлив, для бензомаслостойких прокладок, которые эксплуатируются в условиях, не требующих сопротивления остаточному сжатию.
Тиокол ST используют в тех случаях, когда необходимо сочетание низкотемпературных свойств со стойкостью к растворителям и высоким сопротивлениям к остаточному сжатию. Из него главным образом изготавливают диафрагмы в газовых счетчиках.
На основе жидких тиоколов как зарубежом, так и у нас выпускается ряд торговых марок герметиков, отличающихся природой наполнителя, консистенцией, скоростью вулканизации и специфическими свойствами при эксплуатации.
В авиационной промышленности эти материалы применяют для герметизации, уплотнения фюзеляжей, воздухопроводов, кабины пилота, иллюминаторов и металлических соединений различного типа. Герметики должны иметь адгезию к алюминиевым сплавам, стойкость к обычному и реактивному топливам и хорошие эксплуатационные свойства в условиях полета.
В судостроении герметики используют для защиты стальных корпусов от кавитации и эрозии в подводных условиях.
В строительной технике тиоколовые герметики применяют для герметизации наружных навесных стен, температурных и осадочных швов.
В автомобилестроении полисульфидными герметиками заменяют резиновые прокладки для создания крепления неподвижных ветровых стекол.
Водные тиоколовые дисперсии можно применять для получения антикоррозионных покрытий для металлов. Дисперсии наносятся на поверхность и после высыхания образуются пленки с хорошей бензо- и маслостойкостью, влаго- и газонепроницаемостью.
Жидкие тиоколы более распространены, чем твердые, что связано с их способностью вулканизироваться при комнатной температуре с образованием эластичных воздухонепроницаемых покрытий, способных устойчиво работать в широком интервале температур (от –40 до 100¸1300C) в среде масел, растворителей, в условиях вибрации, при повышенной влажности среды.
1 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ МЕТОДА ПРОИЗВОДСТВА И РАЗМЕЩЕНИЕ ОБЪЕКТА
1.1 Обоснование выбранного метода производства
Полисульфидные олигомеры представляют собой реакционноспособные олигомеры, образующие после отверждения герметики с уникальным комплексом свойств. Высокая термодинамическая гибкость и наличие в основной цепи химически связанной серы (до 80%) сообщают герметикам на основе полисульфидных олигомеров высокую устойчивость к действию топлива, газопроницаемость, водостойкость и благодаря насыщенности основной цепи, высокую стойкость к ультрафиолету, озону, радиации.
В основе синтеза жидких тиоколов лежит реакция поликонденсации ди- или тригалогенпроизводных органических соединений с ди- или полисульфидами натрия. Наиболее распространенным мономером является 2,2-дихлорэтилформаль, который обеспечивает наиболее высокую термодинамическую гибкость макромолекулярных цепей.
Увеличение содержания трихлорпропана (ТХП) в жидком тиоколе в первую очередь приводит к уменьшению относительного удлинения. В связи с этим, как правило, там, где от герметиков требуется высокие значения деформации (строительство), используют тиоколы с содержанием ТХП до 0,5%.
Применение ТХП в качестве разветвляющего агента обеспечивает стабильность состава и функциональности серосодержащих олигомеров и существенно влияет на физико-механические свойства. В зависимости от степени расщепления дисперсии тиокола и содержание ТХП может быть получена целая гамма марок жидкого тиокола с различной молекулярной массой, вязкостью, содержанием концевых SH-групп.
Химизм получения жидкого полисульфидного полимера.
Процесс получения жидких полисульфидных полимеров многостадийный и состоит из следующих основных стадий:
- приготовление шихты;
- поликонденсация хлорпроизводных с тетрасульфидом или дисульфидом натрия.
1)Взаимодействие формаля с полисульфидом натрия:
nCl-CH2-CH2-O-CH2-O-CH2-CH2-Cl + nNa2Sx®
(-CH2-CH2-O-CH2-O-CH2-CH2Sx) + 2nNaCl
x=3,8-4,2 – для тетрасульфида;
x=2,5-2,7 – для дисульфида.
2) Взаимодействие ТХП с полисульфидом натрия:
2nCl-CH2-Cl-CH-CH2-Cl + 3nNaSx® (Sx-CH2-CH-CH2-Sx) + 6nNaCl
Sx
3)Взаимодействие формаля с ТХП и тетрасульфидом:
0,98nCl-CH2-CH2-O-CH2-O-CH2-CH2-Cl + 0.02Cl-CH2-CH-CH2-Cl +
½
Cl
+ 1.15nNaSx® (-CH2-CH2-O-CH2-O-CH2-CH2Sx)0.98n (CH2-CH-CH2-Sx)0.02n½
Sx/2
+ 2.02nNaCl + 0.15nNa2Sx
4) Взаимодействие 1,2-дихлорэтана с полисульфидом натрия:
nCl-CH2-CH2-Cl + nNa2Sx® (CH2-CH2-Sx)n + 2nNaCl
5) Дисульфурирование водной дисперсии полисульфиного полимера с раствором едкого натра:
6nNaOH
3n(R- S -S) ® 3n(R-S-S-) + Na2S2O3 + Na2Sx + H2O
½½½½
S S
6) Отмывка водной дисперсии полисульфидного полимера от избытка полисульфида и солей.
7) Расщепление водной дисперсии высокомолекулярного полисульфидного полимера гидросульфидом натрия в присутствии сульфита натрия:
(R-S-S)n + nNaSH + nNa2SO3® (R-S-Na)n + (R-S-H)n + nNa2S2O3
8) Коагуляция водной дисперсии жидкого полисульфидного полимера кислотой:
2n(R-S-Na) + nH2SO4® 2n(R-S-H) + nNa2SO4
9) Отмывка от кислот и солей и предварительное обезвоживание жидкого полисульфидного полимера на центрифугах.
10) Сушка жидкого полисульфидного полимера при вакуумметрическом давлении.