Смекни!
smekni.com

Хроматографические методы анализа проб, содержащих АХОВ (стр. 4 из 6)

Кинетическая теория хроматографии основное внимание уделяет кинетике процесса, связывая высоту, эквивалентную теоретической тарелке, с процессами диффузии, медленным установлением равновесия и неравномерностью процесса. Высота, эквивалентная теоретической тарелке, связана со скоростью потока уравнением Ван-Деемтера:

,

(14)

где А, В и С – константы;

U – скорость подвижной фазы.

Рисунок 4 – Зависимость ВЭТТ от скорости подвижной фазы

Константа А связана с действием вихревой диффузии, которая зависит от размера частиц и плотности заполнения колонки, величина В связана с коэффициентом диффузии молекул в подвижной фазе, это слагаемое учитывает действие продольной диффузии, а С характеризует кинетику процесса сорбция-десорбция, массопередачу и другие эффекты. Влияние каждого слагаемого уравнения (11) на величину Н в зависимости от скорости подвижной фазы показано на рисунке 4. Первое слагаемое дает постоянный вклад в Н. Вклад второго слагаемого существен при небольшой скорости потока. С увеличением скорости подвижной фазы влияние третьего слагаемого возрастает, а доля второго уменьшается. Суммарная кривая, характеризующая зависимость Н от скорости потока, представляет собой гиперболу.

При небольшой скорости потока высота, эквивалентная теоретической тарелке, уменьшается, а затем начинает возрастать. Поскольку эффективность колонки тем выше, чем меньше высота, эквивалентная теоретической тарелке, оптимальная скорость подвижной фазы будет равна скорости, соответствующей точке минимума этой кривой. Таким образом, динамическая теория дает основу для оптимизации хроматографического процесса.

При хроматографировании смесей компонентов, имеющих различные температуры кипения, в том числе смесей ТХ, применяется метод с программированием температуры, т.е. метод постепенного повышения температуры по заданной программе. Программирование температуры способствует лучшему разделению смесей и уменьшению времени анализа.

Таблица 2 – Параметры удерживания ТХ

Определяемое вещество

Время удерживания τR, мин

Температура удерживания Т, оС

Зарин

4,37

125

Зоман

5,62

135

Сернистый иприт

6,50

142

Хлорацетофенон

8,13

155

BZ

10,93

178

VX

11,83

185

CS

12,70

192

CR

14,17

202

Триэтилфосфат (стадарт)

2,83

115

Во многих странах разработаны методики хроматографического разделения смесей ТХ, установлены и сведены в таблицы соответствующие характеристики. При этом условии хроматографирования предусматривают возможность определения любого из табельных ТХ по единой методике. В качестве примера в таблице 2 приведены характеристики параметров удерживания некоторых ТХ. При этом характеристики времён удерживания приведены для следующих условий: колонка – тефлон, длина – 1,5 м, внутренний диаметр – 4 мм, носитель – парохром-3, обработанный триметилхлорсиланом, неподвижная фаза – нитрилсиликоновый каучук (НСКТ-33), 5 % от веса твёрдого носителя, температура термостата – линейное программирование от 90 до 210 оС со скоростью 8 оС/мин, температура испарителя – 200 оС, скорость газа-носителя (азота) – 40 см3/мин, детектор – ПИД; объём пробы – 1 мкл, растворитель – четырёххлористый углерод.

Как следует из приведённых данных, для анализа проб ТХ, имеющих tкип до 200 0С, достаточно порядка 7 мин; для анализа более высококипящих ТХ требуется до 15 мин. Время анализа можно сократить изменением условий анализа и повышением градиента температур. Ещё большего снижения времени анализа (в 2 – 3 раза) можно достичь применением высокоэффективной капиллярной газовой хроматографии. Газожидкостные хроматографы вводятся в разрабатываемые и перспективные образцы войсковых химических лабораторий высших войсковых звеньев в армиях ряда стран.

4. Количественный анализ ТХ хроматографическими методами

Количественный хроматографический анализ основан на измерении различных параметров пика, зависящих от концентрации хроматографируемых веществ – высоты, ширины, площади и удерживаемого объема – или произведения удерживаемого объема на высоту пика. Расчет по площади пика позволяет несколько снизить требования к стабильности условий хроматографирования по сравнению с расчетом по высоте пика, однако само измерение площади вызывает появление новых источников ошибок. В случае узких пиков некоторые преимущества имеет измерение произведения удерживаемого объема на высоту пика. При неполном разделении пиков ошибки возрастают из-за наложения и искажения контуров пика. При работе с такими хроматограммами используют специальные приемы, опирающиеся, главным образом, на измерение высоты пиков.

Основными в количественной хроматографии являются методы: простой нормировки, нормировки с калибровочными коэффициентами, внутренней стандартизации и абсолютной калибровки.

При использовании метода простой нормировки принимают сумму каких-либо параметров пиков, например сумму высот всех пиков или сумму их площадей, за 100 %. Тогда отношение высоты отдельного пика к сумме высот или отношение площади одного пика к сумме площадей, умноженное на 100, будет характеризовать массовую долю (%) компонента в смеси. Вполне понятно, что такой метод предполагает существование одинаковой зависимости величины измеряемого параметра от концентрации для всех компонентов смеси.

В методе нормировки с калибровочными (градуировочными) коэффициентами за 100 % принимается сумма параметров пиков с учетом чувствительности детектора. Различие в чувствительности детектора учитывается с помощью поправочных коэффициентов для каждого компонента. Один из преобладающих компонентов смеси считают сравнительным, и поправочный коэффициент для него принимают равным единице. Калибровочные (градуировочные) коэффициенты К рассчитывают по формуле

,

(15)

где Пст – параметр пика (высота, площадь и т.д.) стандартного веще-ства;

Пi – параметр пика определяемого компонента;

с – концентрация.

За 100 % принимается сумма исправленных параметров КiПi, и результат анализа рассчитывается так же, как и в методе простой нормировки.

Наиболее точным является метод абсолютной калибровки. В этом методе экспериментально определяют зависимость высоты или площади пика от концентрации вещества и строят градуировочные графики. Далее определяют те же характеристики пиков в анализируемой смеси и по градуировочному графику находят концентрацию анализируемого вещества. Этот простой и точный метод является основным методом определения микропримесей. Метод внутреннего стандарта основан на введении в анализируемую смесь точно известного количества стандартного вещества. В качестве стандартного выбирают вещество, близкое по физико-химическим свойствам к компонентам смеси, но не обязательно являющееся ее компонентом. После хроматографирования измеряют параметры пиков анализируемого компонента и стандартного вещества. Если стандартное вещество не входит в состав анализируемой смеси, массовую долю компонента (%) рассчитывают по формуле

,

(16)

где Пi и Пст – параметры пиков анализируемого компонента и стандарта соответственно;

r – отношение массы внутреннего стандарта к массе пробы.

Относительные поправочные коэффициенты мало зависят от параметров процесса хроматографирования, а определяются в основном только типом детектора и природой разделяемых веществ и газа-носителя.

Основными преимуществами метода газожидкостной хроматографии являются: простота проведения анализа; идеален для анализа газовых проб; возможность использования широкого спектра хроматографических колонок и детекторов; большое количество методических материалов; возможность автоматизации процесса анализа и пробоподготовки; наличие программного обеспечения для качественного и количественного анализа.