Стекловидную массу можно сохранить только при температуре ниже-130°С. При быстром нагревании стекловидное состояние может перейти в жидкое, минуя кристаллическое. Таким образом, минуя структурный распад, который наступает после внутриклеточной кристаллизации, а также при внутренней миграционной перекристаллизации после первоначального процесса замораживания можно с помощью сверхбыстрого охлаждения предотвратить гибель клеток и достигнуть обратимости процесса, от которого зависит максимальное сохранение качества продукта.
Теория солевой денатурации основывается на том, что в процессе льдообразования происходит перераспределение влаги в здании и увеличивается концентрация солей в клетках.
Под действием повышенной концентрации солей и ряда химических и коллоидных процессов происходят денатурационные изменения белковых веществ. При медленном замораживании концентрация солевых растворов в продукте выше и время их воздействия больше. А степень денатурации белков зависит от времени воздействия на них гипертонических растворов. При сверхбыстром замораживании это время сводится к минимуму.
Денатурация белков происходит при температурах, близких к точке эвтектики растворов, и падении рН. Изменение величины рН в биологическом объекте при замораживании приводит к изменениям активности ферментов и скорости денатурации белка.
Однако не всегда быстрое замораживание обеспечивает высокое качество продукта. Так, замораживание некоторых видов пищевых продуктов (большого объема) в криогенных жидкостях протекает с большой скоростью, но одновременно в продукте очень сильно повышается внутреннее давление замерзшего клеточного сока. Рост давления внутри замораживаемого продукта тем больше, чем больше его размеры, быстрее проводится замораживание и больше разность температур между внешним и внутренним слоями продукта. Особенно высокое внутреннее давление создается при замораживании сверхбыстрым способом.
Результат этого — повреждения внешних перемороженных слоев продукта, причем они не связаны с повреждениями, обусловленными образованием крупных кристаллов при медленном замораживании. Эти повреждения происходят, когда температура на поверхности продукта становится намного ниже криоскопической, а в центральных слоях еще отмечается стадия льдообразования. Увеличение объема центральных замерзающих слоев приводит к возрастанию внутреннего давления в продукте, и, когда плотный, неэластичный внешний ледовый слой не в состоянии выдержать внутреннее давление, происходит разрыв замораживаемого продукта.
Решающее значение на скорость замораживания оказывают температура охлаждающей среды, толщина замораживаемого продукта и коэффициент теплоотдачи от его поверхности.
Скорость замораживания влияет и на процессы массообмена, приводящие к усушке продукта. Пока на поверхности продукта не началось льдообразование, с нее испаряется капельно-жидкая влага, а затем происходит сублимация льда, что и приводит к его усушке. Потери воды при замораживании могут колебаться в широких пределах — от 0,3 до 2% и более в зависимости от температуры охлаждающей среды, начальной и конечной температуры продукта, вида среды, метода и скорости замораживания, а также специфических свойств отдельных продуктов.
Потеря массы продукта
Для представления массообмена используют различные математические модели, описывающие явление испарения влаги с поверхности продукта (основаны на законе Дальтона), однако они включают большое количество величин, определение которых затруднено. Поэтому массообмен в холодильной камере можно определять не по величине массы влаги, отданной продуктом, а по массе влаги, усвоенной воздухом в зависимости от его температуры, давления и равновесной влажности.
Усушка резко снижается, если на поверхности продукта натурального имеется влагонепроницаемый слой (корочка подсыхания, слой жировой ткани). При измельчении продуктов усушка резко возрастает. Потери при замораживании плодов и овощей зависят от их размера, характерных свойств кожицы, а также техники замораживания.
При замораживании бесконтактным способом в паронепроницаемой упаковке исключаются потери водяного пара через слой упаковочного материала. Однако при наличии свободных пространств между продуктом и упаковкой на внутренней поверхности упаковочного материала, образуется иней в результате конденсации и замерзании водяного пара (внутренняя усушка).
При любом способе и скорости замораживания в клетке могут происходить сложные изменения, связанные с нарушением ее структуры. Так, понижение температуры продукта до −8 — −10°С сопровождается интенсивным, льдообразованием и, следовательно, резким увеличением концентрации химических соединений в жидкой фазе продукта, уменьшением ее объема, сближением молекул. При этом создаются условия для структурных перестроек белковых молекул, возникновения межмолекулярных реакций, агрегации. Нарушения пространственной структуры макрочастиц белков идентифицируются с денатурацией, а ее внешним проявлением является выделение тканевого сока при размораживании. Развитие этих процессов стимулирует повышение концентрации электролитов в жидкой фазе. Зона максимального развития денатурационных изменений совпадает с температурной зоной максимальной кристаллизации, тканевого раствора. Денатурация наблюдается, прежде всего, в белках фракции актомиозина при отсутствии изменений белков саркоплазмы.
Важным фактором, влияющим на сохранение нагативной структуры белков, является связанная вода. Однако это касается только воды, связанной с белками тех групп, в которых энергия связей выше энергии, высвобождающейся при переходе в кристаллическую структуру льда. Белковые вещества с более узкой энергией связи теряют воду, которая вымораживается, а молекулы белка агрегируются. Стабильные белковые вещества удерживают воду, которая позволяет им сохранить негативную структуру и после размораживания.
Процессы денатурации белков при замораживании в определенной степени замедляются физическими изменениями образовавшегося раствора, в частности изменениями вязкости, ионной силы, давления водяных паров и рН. При введении некоторых веществ (этиленгликоль, пропиленгликоль, сахар, глицерин) процесс денатурации замедляется. Предполагается, что эти вещества усиливают прочность водородных мостиков и связей воды. При введении их снижается количество вымораживаемой воды.
В настоящее время разрабатываются пищевые системы, включающие замораживаемый продукт и структурирующие вещества, состоящие из натуральных пищевых компонентов. Использование таких пищевых систем позволяет получить сырье для замораживания, которое не теряет высокой биологической ценности при температуре замораживания −20°С, длительном хранении в замороженном виде и исключает потери при размораживании.
Изменение белков продуктов происходит также в результате их гидролиза под действием тканевых ферментов, которые высвобождаются при повреждении клеток.
Изменения жиров при замораживании и хранении являются результатом ферментативных и окислительных процессов. С понижением температуры замораживания скорость химических реакций резко замедляется, соответственно замедляются и химические процессы порчи жиров. Скорость ферментативных процессов при понижении температуры в определенном интервале может и возрастать.
При замораживании снижаются количество и активность микроорганизмов, однако добиться их полного уничтожения невозможно. Устойчивость микробной клетки к замораживанию зависит от вида микроорганизма, стадии его развития, среды обитания, а также скорости и температуры замораживания.
Получение высококачественных замороженных продуктов возможно только при исходном высоком качестве сырья, которое определяется многими факторами: условиями роста, кормления, упитанностью, физиологическим состоянием животного перед убоем, совершенством операций по убою и разделке туш. Критерием качества мясного сырья принято также считать степень развития в сырье послеубойных процессов.
Мясо, замороженное в стадии окоченения, имеет более низкое качество, так как белки обладают наименьшей растворимостью, набухаемостью и влагоудерживающей способностью.
Замороженное парное мясо имеет высокую степень обратимости, а белки — хорошую набухаемость и влагоудерживающую способность, так как резко тормозятся автолитические процессы, не наблюдается также изменений гистологической структуры тканей. Такое мясо обладает наилучшими потребительскими свойствами.
Существенном фактором, определяющим качество сырья и его стойкость при последующем хранении, является конечная температура продукта. При ее снижении уменьшаются потери белковых и экстрактивных веществ с мясным соком. Так, мясо животных или рыбы, замороженное до −50+ −70°С, а затем размороженное, незначительно отличается по показателям качества от мяса, не подвергавшегося замораживанию.
В то же время различия в качестве продуктов, замороженных разными методами, после нескольких месяцев хранения при температуре −20°С практически исчезают вследствие рекристаллизации. Движущей силой этого процесса может быть колебание температуры во время хранения, а также разность давлений водяных паров на поверхности мелких и крупных кристаллов. На поверхности мелких кристаллов давление водяных паров всегда выше, вследствие чего происходит миграция влаги от более мелких кристаллов к крупным. При низких температурах процесс рекристаллизации протекает медленно, но по мере повышения рекристаллизации заметно ускоряется.
При всем многообразии способов замораживания к каждому продукту требуется индивидуальный подход при определении метода и технического средства замораживания.
Литература
1. Головкин Н.А. «Холодильная технология пищевых продуктов». – М.: Лег. и пищ. пром-ть, 1984. - 240 с.
2. Куцакова В.Е., Рогов И.А., Фролов С.В., Филиппов В.И. Примеры и задачи по холодильной технологии пищевых продуктов. Ч.1. Теоретические основы консервирования. /М.: Колос, 2001.-136 с.