РЕФЕРАТ
СПУСК И ПОСАДКА КОСМИЧЕСКИХ АППАРАТОВ (КА)
НА ПЛАНЕТЫ БЕЗ АТМОСФЕРЫ
Изучение Солнечной системы с помощью космических аппаратов вносит большой вклад в развитие естественных наук.
Большое внимание к Солнцу определяется вечно живущим в человеке желанием понять, как устроен мир, в котором он живет. Но если раньше человек мог только наблюдать движение небесных тел и изучать на расстоянии некоторые (зачастую малопонятные) их свойства, то сейчас научно-техническая революция дала возможность достичь ряда небесных тел Солнечной Системы и провести наблюдения и даже активные эксперименты с близкого расстояния в их атмосферах и на поверхностях. Эта возможность детального изучения «на месте» изменяет саму методологию изучения небесных тел, которая уже сей-час широко использует арсенал средств и подходов, применяе-мых в комплексе наук о Земле. На стыке планетной астрофизи-ки и геологии идет формирование новой ветви научного знания - сравнительной планетологии. Параллельно на базе законов электродинамики, атомной физики и физики плазмы идет форми-рование другого подхода к изучению Солнечной системы - кос-мической физики. Все это требует развития методов и средств космических исследований, т.е. разработки, проектирования, изготовления и запуска космических аппаратов.
Главное требование, предъявляемое к КА,- это его на-
· 2 -
дежность. Основными задачами спускаемых и посадочных (ПА) аппаратов являются торможение и сближение с поверхностью планеты, посадка, работа на поверхности, иногда взлет с по-верхности для доставки возвращаемого аппарата на землю. Для обеспечения надежного решения всех этих задач при проекти-ровании СА и ПА необходимо учитывать условия в окрестностях и на поверхности изучаемого тела: ускорение свободного па-дения, наличие или отсутствие атмосферы, а также ее свойс-тва, характеристики рельефа и материала поверхности и т.д. Все эти параметры предъявляют определенные требования к конструкции спускаемого аппарата.
Спуск является очень важным этапом космического полета, так как только успешное его выполнение позволит решить пос-тавленные задачи. При разработке СА и ПА принимаются две принципиально различные схемы спуска:
с использованием аэродинамического торможения (для планет, имеющих атмосферу);
с использованием тормозного ракетного двигателя (для планет и других небесных тел, не имеющих атмосферы).
Участок прохождения плотных слоев атмосферы является решающим, так как именно здесь СА испытывают наиболее ин-тенсивные воздействия, определяющие основные технические решения и основные требования к выбору всей схемы полета.
Отметим наиболее трудоемкие и сложные задачи , решае-
· 3 -
мые при проектировании СА:
исследование проблем баллистического и планирующего спусков в атмосфере;
исследование динамики и устойчивости движения при раз-личных режимах полета с учетом нелинейности аэродинамичес-ких характеристик ;
разработка систем торможения с учетом задач научных измерений в определенных слоях атмосферы, особенностей ком-поновки спускаемого аппарата, его параметров движения и траектории.
Что касается спуска на планеты, лишенные атмосферы (классическим примером здесь является Луна), то в этом слу-чае единственной возможностью является использование тор-мозного двигателя, чаще всего жидкостного (ЖРД). Эта осо-бенность порождает дополнительные (кроме чисто баллистичес-ких) проблемы, связанные с управлением и стабилизацией СА на так называемых активных участках - участках работы ра-кетного двигателя.
Рассмотрим более подробно некоторые из этих проблем. Корни проблемы устойчивости СА на активном участке лежат в существовании обратной связи между колебаниями топлива в баках, корпуса СА и колебаниями исполнительных органов системы стабилизации.
Колебания свободной поверхности топлива, воздействуя
· 4 -
на корпус СА, вызывают его поворот относительно центра масс, что воспринимается чувствительным элементом системы стабилизации, который, в свою очередь, вырабатывает команд-ный сигнал для исполнительных органов.
Задача заключается в том, чтобы колебания замкнутой системы объект - система стабилизации сделать устойчивыми (если нельзя их исключить вовсе). Заметим, что острота этой проблемы зависит от совершенства компоновочной схемы СА, а также от структуры и параметров автомата стабилизации (АС).
Желательно, конечно, этот комплекс вопросов решить уже на стадии эскизного проектирования СА. Трудность здесь, од-нако, в том, что на этом этапе практически нет информации о системе стабилизации объекта, в лучшем случае известна структура автомата стабилизации. Поэтому проводить анализ устойчивости СА на данном этапе невозможно.
В то же время ясно, что полностью сформированный конс-
труктивный облик СА целиком (или, во всяком случае, в зна-
чительной мере) определяет его динамику - реакцию на возму-
щение в процессе посадки. Следовательно, задача теоретичес-
кого анализа заключается в выборе математического аппарата,
способного выявить эту зависимость на языке, понятном раз-
работчику. Такой аппарат существует, и он опирается на из-
вестные термины «управляемость», «наблюдаемость», «стабили-
зируемость», характеризующие именно свойства СА как объекта
· 5 -
управления в процессе регулирования.
Этот аппарат дает возможность детально изучить зависи-мость «качества» конструктивно-компоновочной схемы СА от его проектных параметров и в конечном счете дать необходи-мые рекомендации по доработке компоновки объекта либо обос-новать направление дальнейших доработок.
Обычно для стабилизации СА кроме изменения компоновки объекта используют также демпферы колебаний топлива, наст-ройку системы стабилизации и изменение ее структуры.
Итак, применительно к рассматриваемой задаче на этапе эскизного проектирования инженеру приходится решать целый комплекс задач по качественному анализу проблемы устойчи-вости в условиях относительной неопределенности в отношении целого ряда параметров. Поскольку рекомендации разработчика должны быть вполне определенными,то единственный выход - работать с математической моделью СА в режиме диалога «ин-женер - ЭВМ».
Рассмотрим другой круг задач проектирования - моделиро-вание процессов ударного взаимодействия посадочного аппара-та с поверхностью планеты.
Многие достижения отечественной и зарубежной космонав-
тики были связаны с применением посадочных аппаратов (ПА)
для непосредственного, контактного, исследования Луны и
планет Солнечной системы. Использование ПА потребовало раз-
· 6 -
работки новых теоретических и экспериментальных методов исследований, так как этап посадки, характеризуемый значи-тельными (по сравнению с другими этапами) действующими наг-рузками, аппаратурными перегрузками и возможностью опроки-дывания аппарата,является критическим для всей экспедиции. такие характеристики процесса посадки объясняются большой энергией, накопленной ПА к моменту посадки, и совокупностью многих неблагоприятных случайных действующих факторов: рельефом и физико-механическими характеристиками места по-садки, начальными характеристиками и ориентацией СА, упру-гостью его конструкции и др.
Очевидно, что в таких условиях полная оценка надежнос-ти всего этапа посадки возможна лишь при глубоком и всесто-роннем аналитическом исследовании характеристик ПА, завися-щем от наличия математических моделей процесса и расчетных (или расчетно-экспериментальных) методов организации расче-тов.
С точки зрения численного решения задача посадки, при
учете всех сторон процесса, характеризуется большим потреб-
ным машинным временем расчета для одной посадочной ситуа-
ции(до 10 с при быстродействии ЭВМ примерно 10 операций в 1
с), большим количеством возможных посадочных ситуаций, ог-
раничениями на шаг интегрирования уравнений движения СА
(резкое изменение величин действующих усилий может вызвать
· 7 -
вычислительную неустойчивость алгоритма). При параметричес-ком исследовании характеристик СА, в ряде случаев проводи-мом автоматизированно, возможно появление так называемых «окон неустойчивости», где расчет динамики аппарата нецеле-сообразен и где используется диалоговый режим работы ЭВМ для исключения из рассмотрения ряда посадочных ситуаций.
При многих инженерных расчетах, ставящих целью выбор оптимального ПА, а также при качественной оценке его харак-теристик, наиболее разумно использовать упрощенные матема-тические модели процесса (например, модель посадки на ров-ную абсолютно жесткую площадку). Потребное машинное время при этом невелико (до десятка минут) и может быть еще уменьшено за счет применения оптимальных методов и шагов интегрирования уравнений движения ПА.
При проектировании ПА многократно возникает необходи-мость оценки влияния незначительных конструктивных измене-ний на характеристики процесса или оперативной обработки результатов испытаний в найденных заранее расчетных случа-ях (критических ситуациях) посадки.
При проведении таких расчетных работ, доля которых в
общем объеме велика, наиболее выгодно использовать ПЭВМ,
обладающие такими (по сравнению с ЭВМ) преимуществами, как
доступность и оперативность. Применение ЭВМ в таких случаях
нерентабельно, так как в силу их большого быстродействия,
· 8 -
значительная часть дорогостоящего машинного времени расхо-дуется уже не на расчет, а на подготовительные операции при вводе-выводе информации или изменении начальных условий процесса. Применение ПЭВМ выгодно также при отладке сложных программ контактной динамики, предназначенных для серийных расчетов на больших ЭВМ. Время отладки таких программ, в силу их объема и структуры, зачастую превышает время их на-писания, а оперативная и постоянная отладка программ на ЭВМ в диалоговом режиме работы нежелательна из-за большого вре-мени их компиляции и неэкономичного режима работы ЭВМ.