Смекни!
smekni.com

Спуск и посадка космических аппаратов (стр. 2 из 3)

Так как в настоящее время не происходит значительного усложнения структуры моделей процесса посадки, то одновре-менное увеличение быстродействия ПЭВМ вызывает широкое внедрение последних в расчетную инженерную практику.

ТИПИЧНЫЕ СХЕМЫ СПУСКА.

Посадка космических аппаратов на поверхность безатмос-ферной планеты (например,Луны) обычно производится по схеме полета, предусматривающей предварительный перевод КА на планетоцентрическую орбиту ожидания (окололунную орбиту).

Перспективность и преимущество такой схемы посадки опреде-

ляются следующими обстоятельствами: свобода в выборе места

посадки; возможность проверки системы управления непосредс-


· 9 -

твенно перед спуском; возможность уменьшения массы СА, так как часть массы можно оставить на орбите ожидания (напри-мер, топливо или прочный термозащитный отсек для посадки на Землю при возвращении).

После проведения на промежуточной орбите необходимых операций подготовки к спуску включается тормозной двига-тель, и спускаемый аппарат переводится с орбиты ожидания на переходную орбиту - эллипс траектории спуска (рис.1) с пе-рицентром вблизи предполагаемого места посадки. В опреде-ленной точке переходной орбиты вновь включается двигатель и начинается участок основного торможения,на котором решается задача эффективного гашения горизонтальной составляющей вектора скорости СА.

Управление на этом участке производится по программе, обеспечивающей заданные значения координат в конце участка при минимальном расходе топлива; информация при этом посту-пает с инерциальных датчиков.

Заданные конечные значения координат определяют вид но-минальной траектории спуска на последующем участке конечно-го спуска («прецизионном» участке); спуск может осущест-вляться по вертикальной или наклонной траектории.

Типичные траектории полета на основном участке основ-

ного торможения представлены на рис.2. Кривая 1 заканчива-

ется наклонной траекторией конечного спуска, кривая 2 -


· 10 -

вертикальной траекторией.Стрелками показаны направления вектора тяги ракетного двигателя, совпадающие с продольной осью СА. На рис.3 представлена (в увеличенном масштабе) наклонная траектория полета на участке (А,О) конечного спуска.

На участке конечного спуска, измерение фазовых коорди-нат объекта производится радиолокационным дальномером и из-мерителем скорости (доплеровским локатором).

К началу этого участка могут накопиться значительные отклонения (от программных значений) координат, характери-зующих процесс спуска. Причиной этого являются случайные погрешности определения параметров орбиты ожидания, погреш-ность отработки тормозного импульса, недостоверность сведе-ний о гравитационном поле планеты, закладываемых в расчет траектории спуска.

Кроме того, полет на всех участках подвержен действию случайных возмущений - неопределенности величины массы СА, отклонения от номинала тяги тормозного двигателя и т.д. Все это в сочетании с неточностью априорного знания рельефа по-верхности в районе посадки, делает необходимым терминальное управление мягкой посадкой. В качестве исходной информации используются результаты измерения высоты и скорости сниже-ния. Система управления мягкой посадкой должна обеспечить заданную точность посадки при минимальных затратах топлива.


· 11 -

На завершающем участке спуска (см. рис.3) - «верньер-ном» участке (В,О) происходит обычно вертикальный полет СА с глубоким дросселированием тяги тормозного двигателя. Верньерный участок вводится для того, чтобы повысить конеч-ную точность посадки, так как влияние погрешностей опреде-ления параметров траектории на точность посадки СА снижает-ся при уменьшении величины отрицательного ускорения. Кроме того, если тяга непосредственно перед посадкой мала, то уменьшается возможность выброса породы под действием газо-вой струи и уменьшается опрокидывающее воздейсвие на СА от-раженной от поверхности планеты реактивной струи.

ЗАДАЧИ, РЕШАЕМЫЕ СИСТЕМОЙ УПРАВЛЕНИЯ ПОЛЕТОМ СА.

Таким образом, основное назначение системы управления полетом СА - компенсация возмущений, возникающих в полете или являющихся результатом неточности выведения СА на орби-ту ожидания. СА стартует обычно с орбиты ожидания, поэтому задачи управления естественно разделить на следующие груп-пы:

1.управление на участке предварительного торможения;

2.управление на пассивном участке;

3.управление на участке основного торможения;


· 12 -

4.управление на «верньерном» участке;

Более удобна классификация задач по функциональному назначению (рис.4).

Основной навигационной задачей является (рис.5) изме-рение навигационных параметров и определение по ним текущих кинематических параметров движения (координат и скорости), характеризующих возмущенную траекторию (орбиту) движения СА.

В задачу наведения входит определение потребных управ-ляющих воздействий, которые обеспечивают приведение СА в заданную точку пространсва с заданной скоростью и в требуе-мый момент времени, с учетом текущих кинематическихпарамет-ров движения, определенных с помощью решения навигационной задачи, заданных ограничений и характеристик объекта управ-ления.

Задачу управления можно проиллюстрировать примером -

алгоритмом управления мягкой посадкой СА на Луну. Структур-

ная схема соответствующей системы управления представлена

на рис.6

Радиодальномер измеряет расстояние r до лунной поверх-

ностивдоль определенного направления, обычно совпадающего с

направлением продольной оси СА. Доплеровский локатор дает

информацию о текущем векторе скорости снижения V, инерци-

альные датчики измеряют вектор Q углового положения СА, а


· 13 -

также вектор кажущегося ускорения V.

Результаты измерений поступают на выход управляющего устройства, в котором составляются оценки координат, харак-теризующих процесс спуска (в частности, высоты СА над по-верхностью Луны), и формируются на их основе управляющие сигналы U , U , U , обеспечивающие терминальное управление мягкой посадкой (O - связанная система координат СА). При этом U , U задают ориентацию продольной оси СА (и, следова-тельно, тяги двигателя) и используюся как уставки для рабо-ты системы стабилизации, а управляющий сигнал U задает те-кущее значение тяги тормозного двигателя.

В результате обработки сигналов U , U , U , тормозным двигателем и системой стабилизации полет СА корректируется таким образом, чтобы обеспечить выполнение заданных терми-нальных условий мягкой посадки. Конечная точность поссадки считается удовлетворительной, если величина вертикальной составляющей скорости в момент контакта с поверхностью пла-неты не вызывает допустимой деформации конструкции СА, а горизонтальная составляющая скорости не приводит к опроки-дыванию аппарата.

Задачи ориентации и стабилизации как задачи управления СА относительно центра масс формулируется следующим обра-зом:

1.совмещение осей спускаемого аппарата (или одной оси) с


· 14 -

осями (или осью) некоторой системы координат, называемой базовой системой отсчета, движение которой в пространстве известно (задача ориентации);

2.устранение неизбежно возникающих в полете малых угло-вых отклонений осей космического аппарата от соответствую-щих осей базовой системы отсчета (задача стабилизации).

Заметим, что весь полет СА разбивается, по существу, на два участка: активный (при работе маршевого двигателя); пассивный (при действии на СА только сил гравитационного характера).

Решения перечисленных задач (навигации и наведения, ориентации и стабилизации) на активных и пассивных участках имеют свою специфику.

Например, процесс управления полетом на пассивных участках характеризуется , как правило, относительной мед-ленностью и большой дискретностью приложения управляющих воздействий.

Совершенно иным является процесс управления полетом на активном участке, например, при посадке на Луну. Непрерыв-но, начиная с момента включения тормозного двигателя,на борту решается навигационная задача: определяются текущие координаты СА и прогнозируются кинематические параметры движения на момент выключения двигателя.

Так же непрерывно вычисляются и реализуются необходи-


· 15 -

мые управляющие воздействия (момент силы) в продольной и поперечной плоскости наведения. Процесс управления на этом этапе характеризуется большой динамичностью и,как правило, непрерывностью. В некоторых случаях задача наведения может решаться дискретно,причем интервал квантования по времени определяется требованиями к динамике и точности наведения.

Для решения перечисленных задач система управления по-летом СА последовательно (или параллельно) работает в режи-мах ориентации, стабилизации, навигации и наведения. Приборы и устройства, обеспечивающие выполнение того или иного режима управления и составляющие часть всего аппара-турного комплекса системы управления, обычно называют сис-темами навигакции, наведения, ориентации и стабилизации.

Наиболее часто на практике системы, управляющие движе-нием центра масс космического корабля, называют системами навигации и наведения, а системы, управляющие движением космического корабля относительно центра масс,- системами ориентации и стабилизации.

КОМПОНОВОЧНАЯ СХЕМА И УСТОЙЧИВОСТЬ СА.

Устойчивость - важнейшее свойство, которым должен об-ладать СА во время всех эволюций при посадке на планету.

Проблема обеспечения устойчивости, как известно, общая


· 16 -

проблема для всех движущихся объектов, в каждом конкретном случае решаемая, однако, по-разному. И в данном случае, применительно к СА, она также имеет свою специфику.

Дело в том, что жидкое топливо, питающее ракетный дви-гатель во время его работы, колеблется (в силу наличия слу-чайных возмущений). Воздействуя на корпус СА, эти колебания порождают колебания СА в целом.