Смекни!
smekni.com

Инновации в производстве пластмасс (стр. 1 из 4)

Введение

Слово «пластичность» произошло от греческого слова plastikos, что означает «годный для лепки». Многие столетия единственным пластичным, широко применяемым для лепки материалов была глина. Теперь, когда говорят о пластических массах (пластмассах), подразумевают только материалы, созданные на основе полимеров.

Более ста лет назад братья Хайэтт в Нью-Джерси в поисках прочной, но рыхлой массы для типографских валиков создали хорошо формующийся материал из низконитрованной бумаги и камфоры. Так появилось на свет первое искусственное полимерное вещество, получившее название «целлулоид».

В настоящее время в нашем распоряжении имеется настолько разных синтетических веществ, что сами специалисты вряд ли могут охватить все ее многообразие. А для неспециалистов пластмассы - это наиболее характерный продукт современной химии.

Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году. Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е гг стал использоваться в пищевой промышленности как упаковка.


Аналитический обзор

Пластмасса – органический материал, основой которого являются синтетические или природные высокомолекулярные соединения (полимеры).

Полиэтилен — термопластичный полимер этилена. Самый распространенный в мире пластик. Представляет собой воскообразную массу белого цвета (тонкие листы прозрачны и бесцветны). Химически- и морозостоек, изолятор, не чувствителен к удару (амортизатор), при нагревании размягчается (≅80—120°С), при охлаждении застывает, адгезия чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном — похожим материалом растительного происхождения.

Получение. Получение полиэтилена высокого давления

На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:

Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП) образуется при следующих условиях:

· температура 200-260°C;

· давление 150-300 МПа;

· присутствие инициатора (кислород или органический пероксид);

В автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.

Другие способы получения полиэтилена

Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.

Модификации полиэтилена

Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путем получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.

На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.

Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счет этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий. Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.

Молекулярное строение

Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена среднего давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена низкого давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкая кристалличность и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.

Показатели, характеризующие строение полимерной цепи полиэтилена, приведены в таблице:

Полиэтилен высокого давления


С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.

С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определенного предела, после которого также начинает снижаться.

Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).

Химические свойства. Общие свойства

Устойчив к действию воды, не реагирует с щелочами любой концетрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже концентрированной серной, но в разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При комнатной температуре нерастворим и не набухает ни в одном из известных расворителей. При повышенной температуре (80 °C) растворим в циклогексане и четырёххлористом углероде. Под высоким давлением может быть растворен в перегретой до 180 °C воде. Со временем, деструктирует с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Свойства и производство пластмасс

Пластмассы представляют собой материалы на основе природных или синтетических полимеров, способные приобретать заданную форму при нагревании и под давлением и устойчиво сохранять ее после охлаждения.

Органические искусственные вещества - полимеры - построены, как известно, из макромолекул многочисленных малых основных молекул (мономеров). Процесс их образования зависит от разных факторов - отсюда широкие возможности варьирования и комбинирования, а следовательно и неисчерпаемые возможности получения продуктов с самыми разнообразными свойствами. Основные процессы образования макромолекул это полимеризация, ступенчатая.

Структурные формулы некоторых распространенных полимеров полимеризация (полиприсоединение) и поликонденсация.

Название полимера Структура полимера
Мочевиноформальдегидная смола
Полиамидная смола
Полиакрилат
Полиметилметакрилат

Полимеризация - это химическая реакция образования высокомолекулярных продуктов вследствие сцепления простых ненасыщенных органических мономеров, протекающая без отщепления каких либо частей молекул. Пример: n·этилен - полиэтилен.

Полиприсоединение - это объединение различных основных молекул в высокомолекулярные продукты без отщепления третьего вещества. Пример: x·диизоцианат (OCN (R) nNCO) + y·многоатомный спирт - полиуретан.

Поликонденсация - реакция образования высокомолекулярного вещества из мономеров различного вида, которая сопровождается отщеплением низкомолекулярного продукта (часто молекул воды). Пример: x·формальдегид + y·мочевина ( (NH2) 2CO) -мочевиноформальдегидная смола + z·вода.

Физические и химические свойства полимеров обусловлены как особенностями химического состава и молекулярного строения этих веществ, так и их "надмолекулярной" структурой. Так химическая стойкость полиэтилена (устойчивость к действию агрессивных сред) определяется химической формулой мономера (-CH2-CH2 -), не содержащего после полимеризации двойных связей, а физические свойства, например эластичность и непроницаемость,- его надмолекулярной структурой.

Рассмотрим первый аспект проблемы - химический состав и молекулярное строение полимеров.


В соответствие с местом в периодической системе углерод четырехвалентен. Главной его особенностью является способность образовывать вещества, в которых атомы углерода связаны между собой. При этом могут возникать как цепочные (в виде простых или разветвленных цепей), так и циклические соединения:

В зависимости от числа атомов и их взаимного расположения изменяются и свойства вещества. Например, чем больше атомов входит в соединение, тем менее оно летучее.

Свойства соединений углерода в большой степени зависят от характера связей между его отдельными атомами. Способность атомов углерода образовывать цепочки, кольца или сложные решетки, в которые вклинены другие элементы, обуславливает существование свыше трех миллионов известных в настоящее время соединений углерода.