Рисунок 8 – Расчетная схема тормоза
а – расчетная схема набегающего конца ленты; б расчетная схема сбегающего конца ленты
Рисунок 9 – Расчетная схема колодки тормоза
Тангенциальная сила торможения FТ, Н
, (7)В связи с тем, что уточненный расчет ленточно – колодочного тормоза довольно трудоемок, в КБ заводов его рассчитывают на ЭВМ. Для этого исходная информация для расчета заноситься в бланк исходных данных для ЭВМ.
Программа для расчета на машине строиться так, чтобы она выдавала все необходимые величины для сбегающего и набегающего концов ленты. Для анализа действующих нагрузок расчеты ведут для минимальных и максимальных значений коэффициента трения.
При минимальном коэффициенте трения усилия на органах управления тормозом будут максимальные, и они принимаются для расчета элементов на прочность.
Важными параметрами ленточных тормозов являются скорость трения колодки о шкив, удельная нагрузка, от которых зависит ширина тормоза и износ колодок и тормозной поверхности шкива.
Скорость трения на тормозном шкиве UШ, м/
, (8)где uт – кратность полиспаста талевой системы
Наибольшее давление между лентой и тормозным шкивом возникает на поверхности контакта набегающего конца ленты со шкивом, и, постепенно уменьшаясь, оно достигает минимального значения на контакте сбегающего конца ленты со шкивом.
Удельная наибольшая нагрузка между колодкой и шкивом ρmax , МПа
, (9)где В – ширина ленты тормоза, м,
Удельная наименьшая нагрузка между колодкой и шкивом ρmin , МПа
, (10)Длина соприкосновения колодок со шкивом L, м
, (11)Площадь поверхности трения ПТР, м2
, (13)Средняя удельная нагрузка ρср , МПа
, (14)Допускаемое максимальное значение ρср зависит от свойства выбранных материалов шкивов и колодок тормозных лент. Для наиболее широко используемых в настоящее время материалов 0,1 ≤ ρср ≤ 0,7 МПа. Более высокие удельные нагрузки ускоряют износ тормозных колодок и снижают долговечность тормоза.
Мощность торможения NT, кВт
, (15)где µ – коэффициент трения тормозных колодок и шкива;
υш – скорость на ободе шкива при торможении, м/с
, (16)ni – частота вращения барабана лебедки при торможении, об/мин
Секундная удельная мощность трения при торможении NУД, кВт/м2
3.3 Силы, действующие в рычажном механизме тормоза
В ленточных тормозах буровых лебедок набегающий корец ленты необходимо прикреплять к балансиру лебедки, а подвижный к коленчатому валу, на который действует только сила натяжения сбегающего конца ленты, создающая на нем момент МТ, кН·м. Этот момент уравновешивается моментом, создаваемый силой, прикладываемой к тормозному рычагу, и моментом, создаваемым силой, приложенной к кривошипу коленчатого вала штоком пневмоцилиндра, т. е.
, (18)где r – радиус кривошипа от неподвижного шарнира до точки крепления к подвижному концу ленты, м;
ψ – угол поворота коленчатого вала, град.
Подвижный конец ленты в момент полного торможения должен быть расположен под углом к оси кривошипа близким к 90º.
Усилие на тормозной рукоятке РР при отсутствии момента, создаваемым силой, приложенной к кривошипу коленчатого вала штоком пневмоцилиндра
, (19)где β2 – угол между осью рычага и лентой, град;
η – к. п. д. рычажной системы;
l – длина тормоза рычага, м;
β1 – угол между сбегающим концом ленты и осью кривошипа
Путь торможения на ободе шкива тормоза h0, м
, (20)где hК – путь, проходимый крюком при торможении во время спуска, м,
, (21)υск – скорость спуска в начальный момент торможения, м/с,
,Для приближенных расчетов может быть принят прямолинейный закон изменения скорости при торможении, тогда время торможения tT, с,
, (22)Поскольку момент, развиваемый тормозом, зависит от усилия, приложенного к тормозному рычагу и пневмоусилителю, на которые воздействует оператор, время торможения может изменяться в широких пределах. При резком торможении в подъемной системе могут создаваться большие динамические нагрузки, поэтому в буровых лебедках, рассчитанных на канаты определенного диаметра, нельзя произвольно применять канат меньшего или большего диаметра. В первом случае канат может быть оборван при резком торможении даже при правильном выборе его диаметра по статической нагрузке. Во втором случае увеличиться путь торможения из – за недостаточного тормозного момента, хотя прочность каната будет соответствовать расчетной нагрузке. [1]
3.4 Тепловой расчет главного тормоза
При спуске бурильной колонны в процессе проводки скважин выделяется значительное количество энергии, которая должна поглощаться тормозной системой буровой лебедки. При торможении эта энергия превращается в теплоту, которая вызывает сильный нагрев тормозных колодок и шкивов и приводит к их быстрому изнашиванию. Одновременно с повышением температуры тормозных шкивов и колодок уменьшается коэффициент трения, что заставляет бурильщика увеличивать усилие на тормозном рычаге и тем самым повышать нагрузку на колодки, что ускоряет их износ.
При эксплуатации буровых лебедок без регулирующего тормоза тормозные колодки иногда срабатывают в течение одного – двух спусков бурильной колонны.
В процессе спуска происходит постоянное чередование периодов торможения и спусков колонны, периодов подъема ненагруженного элеватора и периодов пауз, причем вес спускаемой колонны за каждый цикл увеличивается на вес одной свечи
Главные тормоза рассчитывают на нагрев по количеству выделяемой теплоты при спуске на длину свечи колонны наибольшего веса. Меньший вес бурильной колонны в предыдущий момент спуска в расчете не учитывают.
Количество работы А, кДж, которая должна поглотить тормозная система при спуске колонны на длину одной свечи
, (23)где Рвус – натяжение ведущей струны при спуске, Н;
lс – длина свечи, м
Так как величины коэффициентов теплоотдачи приведены к единице времени 1с, условно можно принимать, что количество выделяемого в тормозе тепла QE, кВт/ч
, (24)