Смекни!
smekni.com

Источники низкопотенциальной тепловой энергии (стр. 3 из 5)

Геотермическими (скальными) источниками можно пользоваться в регионах, где подпочвенных вод мало или нет совсем. Тогда нужно пробурить колодцы глубиной от 100 до 200 м. В случае если требуется обеспечить высокую тепловую мощность, колодцы бурятся под определенным наклоном таким образом, чтобы добраться и упереться в большой скальный массив. Для таких тепловых насосов также применяется рассольная жидкость и пластмассовый сварной трубопровод, извлекающий тепло из скалы. В некоторых системах скальная порода используется для аккумулирования тепла или охлаждающей энергии. В силу высокой стоимости буровых работ скальные породы для обслуживания жилого сектора применяются довольно редко.

Скважина

При использовании в качестве источника тепла скалистой породы трубопровод опускается в скважину. Можно пробурить несколько не глубоких скважин – это, возможно, обойдётся дешевле, чем одна глубокая. Главное – получить общую расчетную глубину.

Для предварительных расчетов используется следующее соотношение – 50-60 Вт тепловой энергии на 1 метр скважины. То есть, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной 170 метров.

Земляной контур

При укладке контура в землю желательно использовать участок с влажным грунтом, лучше всего с близкими грунтовыми водами. Использование сухого грунта тоже возможно, но это приводит к увеличению длины контура. Трубопровод должен быть зарыт на глубину примерно 1 м, расстояние между соседними трубопроводами – примерно 0.8-1.0 м.

Удельная тепловая мощность трубопровода, уложенного в землю трубопровода – 20-30 Вт/м. Т. е. для установки теплового насоса производительностью 10 кВт достаточно 350-450 м теплового контура, для чего хватит участка 20х20 кв.м.

Специальной подготовки почвы не требуется, влияния на растения трубопровод при правильном расчёте не оказывает.

5. Пример использования теплонаносной системы для горячего водоснабжения жилого дома

В Москве, в микрорайоне Никулино-2 фактически впервые была построена теплонаносная система горячего водоснабжения многоэтажного жилого дома. Этот проект был реализован в 1998-2002 годах Министерством обороны РФ совместно с Правительством Москвы, Минпромнауки России, Ассоциацией “НП АВОК” и ОАО “ИНСОЛАР-ИНВЕСТ” в рамках “Долгосрочной программы энергосбережения в г. Москве”. Проект выполнен под научным руководством доктора технических наук, член-корреспондента РААСН Ю. А. Табунщикова.

В качестве низкопотенциального источника тепловой энергии для испарителей тепловых насосов используется тепло грунта поверхностных слоев Земли, а также тепло удаляемого вентиляционного воздуха. Такая система также допускает использование в качестве низкопотенциального источника тепловой энергии тепло сточных вод. Установка для подготовки горячего водоснабжения расположена в подвале здания. Она включает в себя следующие основные элементы:

- парокомпрессионные теплонаносные установки (ТНУ);

- баки-аккумуляторы горячей воды;

- системы сбора низкопотенциальной тепловой энергии грунта и низкопотенциального тепла удаляемого вентиляционного воздуха;

- циркуляционные насосы, контрольно-измерительную аппаратуру.

Основным теплообменным элементом системы сбора низкопотенциального тепла грунта являются вертикальные грунтовые теплообменники коаксиального типа, расположенные снаружи по периметру здания. Эти теплообменники представляют собой 8 скважин глубиной от 32 до 35 м каждая, устроенных вблизи дома.

Система сбора низкопотенциального тепла удаляемого вентиляционного воздуха предусматривает устройство в вытяжных вентиляционных камерах теплообменников-утилизаторов, гидравлически связанных с испарителями теплонаносных установок. В этом случае обеспечивается более глубокое охлаждение вытяжного воздуха и использование его тепла в тепловых насосах для получения горячей воды.

Система решена следующим образом. Из вентиляционных шахт удаляемый воздух собирается в коллектор и из него вытяжным вентилятором прогоняется через теплообменник-утилизатор, охлаждается и выбрасывается в атмосферу. Теплообменник-утилизатор связан с испарителем теплового насоса промежуточным контуром при помощи циркуляционного насоса. От конденсатора теплового насоса полезное тепло отводится в систему горячего водоснабжения.

Поскольку режим работы тепловых насосов, использующих тепло земли и тепло удаляемого воздуха, постоянный, а потребление горячей воды переменное, система горячего водоснабжения оборудована баками-аккумуляторами.

6. Компрессор – элемент теплового насоса

Компрессором называют воздуходувную машину, предназначенную для сжатия и подачи воздуха или какого-либо газа под давлением не ниже 0,2 МПа.

Компрессоры паровых холодильных машин входят в состав герметически закрытой системы и предназначены для отсасывания холодного агента из испарителя в целях поддержания в последнем давления Ро, сжатия пара и выталкивания его в конденсатор при давлении Рк, необходимом для сжатия.

Производительность компрессора характеризуется холодопроизводительностью машины и зависит от конструкции, режима работы холодильной машины и холодильного агента, на котором она работает.

7. Классификация компрессоров

Гидравлической машиной называют устройство, преобразующее механическую работу в энергию потока жидкости и наоборот.

Турбиной или гидродвигателем называется гидравлическая машина, в которой в результате обмена энергией происходит преобразование механической энергии жидкости в механическую работу (вращение вала, возвратно-поступательное движение поршня и т.д.).

Нагнетатель – гидравлическая машина, в которой происходит преобразование механической работы в механическую энергию жидкости. Основное назначение нагнетателя – повышение полного давления перемещаемой среды.

Насос – устройство, служащее для напорного перемещения (всасывания, нагнетания) главным образом капельной жидкости в результате сообщения ей энергии. Насосы в основном классифицируют по принципу действия и конструкции. В этом смысле их подразделяют на объемные и динамические.

Компрессором называют воздуходувную машину, предназначенную для сжатия и подачи воздуха или какого-либо газа под давлением не ниже 0,2 МПа.

Объемные компрессоры работают по принципу вытеснения, когда давление перемещаемой среды повышается в результате сжатия. В таких компрессорах среда перемещается путем периодического изменения объема камеры, попеременно сообщающейся со входом и выходом компрессора. К ним относятся возвратно-поступательные (поршневые) и роторные (аксиально и радиально-поршневые, шиберные (пластинчатые), винтовые и т.п.) компрессоры.

К преимуществам объемных компрессоров относятся:

- возможность развивать напор независимо от подачи;

- высокий КПД;

- способность перекачивать жидкости различных вязкости и температуры;

- возможность перекачивать жидкости, содержащие твердые взвеси;

- хорошая всасывающая способность;

- отсутствие пенообразования.

К недостаткам объемных компрессоров относятся:

- сложность конструкции;

- сложная система регулирования подачи;

- пульсирующая подача перекачиваемой жидкости.

Динамические компрессоры работают по принципу силового действия на перемещаемую среду. В таких компрессорах среда под воздействием гидродинамических сил перемещается в камере (незамкнутом объеме), постоянно сообщающейся с входом и выходом компрессора. К ним относятся лопастные (радиальные, центробежные, осевые) нагнетатели и нагнетатели трения (вихревые, дисковые, струйные и т.п.).

Лопастными называют компрессоры, в которых среда перемещается за счет энергии, передаваемой ей при обтекании лопастей рабочего колеса. Лопастные компрессоры объединяют две большие группы компрессоров: центробежные и осевые. В центробежных компрессорах среда перемещается через рабочее колесо от центра к периферии, а в осевых – через рабочее колесо в направлении его оси.

В компрессорах трения и инерции среда перемещается под действием сил трения и сил инерции. В эту группу входят вихревые, лабиринтные, червячные и другие насосы. Среди них выделяют группу насосов-аппаратов, то есть насосов без движущихся частей (не считая клапанов). К этой группе относятся струйные насосы, эрлифты, вытеснители.

Часто насосы поставляют в виде насосного агрегата, то есть насоса и двигателя соединенных между собой. Кроме того, существует понятие насосная установка, то есть насосный агрегат с комплектом оборудования, смонтированного по определенной схеме, обеспечивающей работу насоса в заданных условиях.

8. Требования к компрессорам

При проектировании и изготовлении современных компрессоров предусматривают максимальную унификацию и стандартизацию конструкций, то есть создание одинаковых узлов и деталей для компрессоров с неодинаковой холодопроизводительностью и работающих на разных холодильных агентах. Унификация и стандартизация конструкций значительно облегчают организацию серийного производства, снижают себестоимость производства и ремонта.

Компрессоры, используемые в системах теплогазоснабжения и вентиляции, должны удовлетворять следующим основным требованиям:

- соответствие фактическим параметрам работы (давление, расход и мощность) заданным расчетным условиям;

- возможность регулирования подачи и давления в определенных пределах;

- устойчивость и надежность в работе;

- простота монтажа;

- бесшумность при работе.

9. Область применения различных насосов, нагнетателей и компрессоров

Нагнетатели различных типов находят широкое применение в системах вентиляции и кондиционирования воздуха гражданских, общественных и промышленных зданий, в системах тепло-, газо и водоснабжения, в различных теплоэнергетических установках, в химической, добывающей, машиностроительной и других отраслях народного хозяйства.