Смекни!
smekni.com

Разработка технологического процесса изготовления шестерни (стр. 1 из 2)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 2

1 АНАЛИЗ МАТЕРИАЛА ДЕТАЛИ.. 3

2 РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ТЕРМИЧЕСКОЙ ОБРАБОТКИ.. 5

2.1 Общая характеристика цементации. 5

2.2 Характеристика газовой цементации. 7

2.3 Термическая обработка стали после цементации и свойства цементованных деталей. 8

2.3.1 Характеристика закалки. 8

2.3.2 Характеристика низкого отпуска. 10

2.4 Технологический процесс термической обработки зубьев вала-шестерни12

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ.. 13


ВВЕДЕНИЕ

Металловедением называется наука, устанавливающая связь между составом, структурой и свойствами металлов и сплавов и изучающая закономерности их изменения при тепловых, химических, механических, электромагнитных и радиоактивных воздействиях.

Все металлы и сплавы принято делить на две группы.

Железо и сплавы на его основе (сталь, чугун) называют черными металлами, а остальные металлы (Be, Mg, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Sn, W, Au, Hg, Pbи др.) и их сплавы – цветными.

Современное машиностроение характеризуют непрерывно растущая энергонапряженность, а также тяжелые условия эксплуатации машин. Такие условия работы машин предъявляют к материалам особые требования. Для удовлетворения этих требований создано много сплавов на основе различных металлов.

В современной технике широко применяют стали, обеспечивающие высокую конструктивную прочность, и сплавы, которые остаются прочными при высоких температурах, вязкими при температурах, близких к абсолютному нулю, обладающие высокой коррозионной стойкостью в агрессивных средах или другими физико-химическими свойствами.

Число новых сплавов непрерывно растет.

В специальном машиностроении все шире применяют так называемые композиционные материалы, сплавы с памятью формы и т.д.

За последние годы достижения материаловедения обеспечили небывалый прогресс в разработке конструкционных и инструментальных материалов в различных областях техники. Исследования реальной структуры твердых тел показали принципиальную возможность получения сплавов с прочностью, приближающейся к теоретической, определяемой прочностью межатомных связей.

1 АНАЛИЗ МАТЕРИАЛА ДЕТАЛИ

В курсовой работе назначена марка материала для изготовления- сталь 15Х2НГТА.Это означает, что в стали содержится 0,15 %углерода,2% хрома,1% никеля,1 % марганца,1 % титана, сталь высококачественная, т.е. в ней содержится уменшенное количество примесей фосфора и серы.

Наличие хрома повышает прочность, коррозионную стойкость, прокаливаемость (при этом пластичность и вязкость падают).

В хромистых сталях в большей степени развивается промежуточное превращение и при закалке с охлаждением в масле, выполняемой после цементации, сердцевина изделия имеет бейнитное строение. Вследствие этого хромистые стали по сравнению с углеродистыми обладают более высокими прочностными свойствами при несколько меньшей пластичности в сердцевине

Никель находится только в твердом растворе и повышает коррозионные свойства сталей, а также прочность и вязкость.

Марганец и никель являются аустенизаторами, т.е. растворяясь в железе, расширяет область аустенита.

Метод упрочнения(термообработки):цементация (газовая).


2 РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ТЕРМИЧЕСКОЙ ОБРАБОТКИ

В качестве способа термической обработки зубьев принимаем газовую цементацию с последующей закалкой и низким отпуском.

2.1 Общая характеристика цементации

Цементацией называется процесс насыщения поверхностного слоя стали углеродом. Различают два основных вида цементации: твердыми углеродосодержащими смесями (карбюризаторами) и газовую. Целью цементации является получение твердой и износостойкой поверхности, что достигается обогащением поверхностного слоя углеродом до концентрации 0,8÷1,2% и последующей закалкой с низким отпуском. Цементация и последующая термическая обработка одновременно повышают и предел выносливости.

Для цементации обычно используют низкоуглеродистые стали 0,1÷0,18% С. Для крупногабаритных деталей применяют стали с более высоким содержанием углерода (0,2÷0,3%). Выбор таких сталей необходим для того, чтобы сердцевина изделия, не насыщающаяся углеродом при цементации, сохраняла высокую вязкость после закалки.

Для цементации детали поступают после механической обработки нередко с припуском на шлифование 0,05÷0,10 мм. Во многих случаях цементации подвергается только часть детали; тогда участки, не подлежащие упрочнению, защищают тонким слоем меди (0,02÷0,04 мм), которую наносят электролитическим способом или изолируют специальными обмазками, состоящими из смеси огнеупорной глины, песка и асбеста, замешанных на жидком стекле, и др.

Цементацию проводят при температурах 920÷950°С, когда устойчив аустенит, растворяющий в больших количествах углерод. При цементации стали атомы углерода диффундируют в решетку γ-железа. По достижении предела насыщения аустенита углеродом, определяемого линией SE на диаграмме Fe-Fe3C, на поверхности может образоваться сплошной слой цементита.

В реальных условиях цементации образование на поверхности слоя цементита наблюдается крайне редко. Обычно при температуре цементации 920÷950°С диффузионный слой состоит только из аустенита, а после медленного охлаждения – из продуктов его распада – феррита и цементита.

Цементированный слой имеет переменную концентрацию углерода по глубине, убывающей от поверхности к сердцевине детали. В связи с этим после медленного охлаждения в структуре цементованного слоя можно различить (от поверхности к сердцевине) три зоны: заэвтектоидную, состоящую из перлита и вторичного цементита и образующую сетку по бывшему зерну аустенита; эвтектоидную, состоящую из одного пластинчатого перлита, и доэвтектоидную зону, состоящую из перлита и феррита. Количество феррита в этой зоне непрерывно возрастает по мере приближения к сердцевине.

За техническую (эффективную) толщину цементованного слоя обычно принимают сумму заэвтектоидной, эвтектоидной и половины переходной (доэвтектоидной) зон или глубину до твердости HRC50 или HV500÷600 после закалки.

Опыт показывает, что толщина цементованного слоя для деталей, изготовляемых из стали с ≤ 0,17% С, составляет 15% от наименьшей толщины или диаметра цементуемого сечения. При содержании в стали > 0,17% С толщину слоя уменьшают до 5÷9%, а для изделий, работающих на износ, не испытывающих больших удельных нагрузок, до 3÷4% от наименьшей толщины или диаметра цементуемого сечения. Чаще всего толщина слоя 0,5÷2,0 мм.

Концентрация углерода в поверхностном слое должна составлять 0,8÷1,0%. Для получения максимального сопротивления контактной усталости содержание углерода может быть повышено до 1,1÷1,2%. Более высокая концентрация углерода вызывает ухудшение механических свойств цементуемого изделия.

2.2 Характеристика газовой цементации

Под цементацией принято понимать процесс высокотемпературного насыщения поверхностного слоя стали углеродом. Так как углерод в α-фазе практически нерастворим, то процесс цементации осуществляется в интервале температур 930–950 °С — т. е. выше α → γ-превращения. Структура поверхностного слоя цементованного изделия представляет собой структуру заэвтектоидной стали (перлит и цементит вторичный), поэтому для придания стали окончательных — эксплуатационных — свойств после процесса цементации необходимо выполнить режим термической обработки, состоящий в закалке и низком отпуске; температурно-временные параметры режима термической обработки назначаются в зависимости от химического состава стали, ответственности, назначения и геометрических размеров цементованного изделия. Обычно применяется закалка с температуры цементации непосредственно после завершения процесса химико-термической обработки или после подстуживания до 800–850 °С и повторного нагрева выше точки АС3 центральной (нецементованной) части изделия. После закалки следует отпуск при температурах 160–180 °С.

Цементация как процесс химико-термической обработки, в основном, применяется для низкоуглеродистых сталей типа Ст2, СтЗ, 08, 10, 15, 20, 15Х, 20Х, 20ХНМ, 18ХГТ, 25ХГТ, 25ХГМ, 15ХГНТА, 12ХНЗА, 12Х2Н4А, 18Х2Н4ВА и др., однако в ряде случаев может быть использована при обработке шарикоподшипников — стали ШХ15, 7Х3 и коррозионностойких сталей типа 10Х13, 20Х13 и т. д. Стали, рекомендуемые для цементации, должны обладать хорошей прокаливаемостью и закаливаемостью цементованного слоя, которые должны обеспечить требуемый уровень прочности, износостойкости и твердости. Прокаливаемость сердцевины должна регулироваться в весьма узком диапазоне твердостей, который составляет 30–43 HRCЭ. Учитывая длительность процесса цементации и высокую температуру процесса, рекомендуется при этом виде химико-термической обработки использовать наследственно мелкозернистые стали, размер зерна которых не должен превышать 6–8 баллов. В противном случае в ходе цементации отмечается значительный рост зерна сердцевины изделия, что приводит к снижению его эксплуатационных свойств.