Смекни!
smekni.com

Проектирование двигательной установки и элементов конструкции второй ступени баллистической ракеты (стр. 9 из 24)

Четвертая особенность теплообмена вытекает из условия применения ЖРД как ДУ ЛА (ракеты, спутника, самолета). Поэтому использовать для охлаждения КС специальную жидкость в большинстве случаев нерационально. Обычно ЖРД охлаждают каким-либо из компонентов топлива, пропуская его до подачи в КС ЖРД через полость охлаждения. Такой принцип охлаждения усложняет конструкцию камеры и выдвигает дополнительные требования к применяемым компонентам топлива.

Температуру стенок КС можно поддерживать в допустимых пределах с помощью одного из следующих способов:

- наружного (или регенеративного) охлаждения.

- внутреннего охлаждения.

- смешанного охлаждения.

- радиационного охлаждения.

- абляционного охлаждения.

- защита внутренних стенок термостойкими покрытиями.

- емкостного охлаждения.

- транспирационного охлаждения.

На процесс теплообмена в КС также оказывает влияние форма и размеры охлаждающего тракта. В оребренном охлаждающем тракте теплообмен увеличивается за счет увеличения поверхности охлаждения и возможности выполнения более тонкой огневой стенки. Помимо улучшения теплообмена применение оребрения увеличивает прочность и жесткость камеры.

Для расчета эффективности системы охлаждения ЖРД необходимо определить конструкцию и основные размеры охлаждающего тракта, выбрать способ охлаждения.

Для проектируемого двигателя, в качестве основного, принимаем наружное охлаждение с помощью одного из компонентов топлива. Данный способ организации охлаждения получил название проточного.

Охлаждающий тракт с продольными ребрами, выполненными фрезерованием. Данный выбор обусловлен тем, что КС охлаждается небольшим количеством охладителя т. е. предъявляются высокие требования к точности изготовления охлаждающего тракта.

Достоинствами КС с фрезерованными пазами являются:

-высокая (по сравнению с КС имеющих гофрированные проставки) прочность.

-качество тракта охлаждения. Пазы любой конфигурации получают механической обработкой, т. е. наиболее точным способом (особенно на станках с программным управлением).

К недостаткам конструкции данного типа относятся большая масса и значительная трудоемкость изготовления.


5.1 Расчет максимального шага оребрения КС

Максимальный шаг ребер рассчитывается для закритической части сопла в режиме гидроопрессовки.

Исходные данные:

Толщина внутренней стенки:

.

Материал огневой стенки:12Х18Н10Т

Предел прочности материала огневой стенки (при

):
.

Давление в КС:

.

Материал припоя:ПЖК-1000

Предел прочности материала припоя:

Рабочее давление в межрубашечном зазоре:

где

- гидравлические потери в охлаждающем тракте.

- перепад давления на форсунках.

Давление гидроопрессовки:

.

По рекомендациям давление гидроопрессовки

. Расчетное давление гидроопрессовки получилось выше рекомендуемого. Принимаем давление гидроопрессовки равным наибольшему рекомендуемому значению
.

Максимальный шаг ребер из условия прочности внутренней стенки:

;

где

- толщина ребра,
- коэффициент запаса прочности.

Максимальный шаг ребер из условия прочности спая:

.

Из двух полученных расчетных значений выбираем наименьшее, которое и будет определять местную прочность КС. По данным статистики шаг ребер лежит в диапазоне от 2 до 6,5 мм. Принимаем максимальный шаг ребер, с учетом рекомендаций, равным

.

Рис. 1.15 Геометрические параметры охлаждающего тракта

Расчет местной прочности внутренней оболочки КС

Изгибающий момент в зоне защемления внутренней стенки КС:

.

где


.

Момент сопротивления защемленной балки единичной ширины, толщиною

:

.

Рис.1.16 Схема нагружения огневой стенки при гидроопрессовке

Напряжение местного изгиба в точке защемления:

.

Напряжение среза во внутренней стенке в месте защемления:


.

Эквивалентное напряжение для внутренней стенки:

.

Коэффициент запаса прочности:

.

5.2 Расчет числа секций оребрения в закритической части сопла

Под секцией будем понимать участок, в пределах которого число ребер охлаждающего тракта остается постоянным. Изменение числа ребер в секциях связано с увеличением шага ребер по диаметру

, при движении от критического сечения к срезу сопла вдоль образующей, что ведет к уменьшению прочности огневой стенки. Увеличение количества ребер происходит в момент, когда шаг ребер достигает критического значения определенного выше и равного
.

Число каналов критического сечения:

;

где

- диаметр критического сечения.

- размер паза ребра охлаждающего тракта. По рекомендациям в критическом сечении
.

Принимаем число каналов в критическом сечении равным

.

Рис.1.17 Изменение числа ребер по длине КС

Шаг ребер в крайнем сечении i-ой секции докритической части сопла:

.

где

- некоторый запас по шагу.

Диаметр крайнего сечения первой секции:

.

Количество ребер второй секции:

.

Диаметр крайнего сечения второй секции:


.

Количество ребер третьей секции:

.

Диаметр крайнего сечения третьей секции:

.

Диаметр крайнего сечения третьей секции больше диаметра среза сопла. Следовательно, необходимость расчета последующей секции отпадает.

Шаг ребер на срезе сопла:

.

5.3 Расчет числа проставок для докритической части сопла

Для докритической части сопла расчет ведется по тем же зависимостям, что и для закритической части.

Уменьшим шаг крайнего сечения секции до

, что не повлияет на кол-во секций (как видно из предыдущего расчета) но увеличит скорость движения охладителя и, как следствие, возрастет теплообмен между огневой стенкой и охладителем.

Шаг ребер в крайнем сечении i-ой секции в докритической части сопла:


.

где

- запас по шагу.

Диаметр крайнего сечения первой секции:

.

Количество ребер второй секции: