Висока якість гартування досягається при нагріві і охолодженні деталей в соляних ваннах. Проте вони мають порівняно мале розповсюдження в підшипниковій промисловості у зв'язку з необхідністю додаткових операцій промивки і оберігання деталей від корозії, несприятливих гігієнічних умов роботи і підвищеного забруднення зовнішнього середовища. Вельми перспективне застосування вакуумних печей.
Режим гартування призначається залежно від складу сталі і характеру початкової структури і визначається швидкістю і температурою нагріву, часом витримки і інтенсивністю охолодження.
Швидкість нагріву. Теплопровідність і пластичність сталі ШХ15 дозволяють нагрівати її практично скільки завгодно швидко без небезпеки виникнення тріщин. Прискорення нагріву збільшує продуктивність устаткування, зменшує окислення і зневуглення деталей. У прохідних печах прискорення нагріву досягається збільшенням потужності і підвищенням температури в завантажувальних зонах.
Температура нагріву. Нагрів повинен забезпечити:
а) завершення перлито-аустенітного перетворення при растворінні вуглецю в аустеніті до змісту 0,55 - 0,65 %;
б) збереження відносно дрібного (9-10-го балів по ГОСТ 5639-82) аустенітного зерна;
в) достатню однорідність аустеніту, що дозволяє запобігти появлення в структурі загартованої сталі продуктів немартенситного перетворення [5].
Чим більше деталь, тим повільніше вона охолоджуються в гартівній рідині і тим більша стійкість аустеніту необхідна для якісного гартування. Для розчинення необхідної кількості вуглецю і легуючих елементов в аустеніті крупні деталі нагрівають до більш за високих температур.
На процес гартування підшипникових деталей впливає хром. Хром збільшує кількість надмірних карбідів в структурі сталі і зменшує чутливість до перегріву. Внаслідок присадки хрому зменьшується критична швидкість гартування і збільшується прогартованість. Невелика критична швидкість гартування необхідна для того, щоб можна було деталі гартувати в маслі. При гартуванні в маслі відбувається частковий відпустк мартенситу, що знижує напругу.
Із збільшенням змісту хрому критична швидкість гартування значно знижується. Для сталі ШХ15 (1% З і 1,5% Сг) критична швидкість гартування зменшується з 500 до 35 - 40° С/хв. У зв'язку із зменшенням критичної швидкості гартування деталі із сталі ШХ15 прожарюють на значно велику глибину.
Сталь ШХ15 – заевтектоїдна сталь, яка піддається неповному гартуванню. При цьому досягається максимальна твердість через збереження нерозчинних карбідів, відбувається гальмування росту аустенітного зерна, в структурі отримується дрібногольчатий мартенсит та зберігається найменша кількість залишкового аустеніту. Температура нагріву при неповному гартуванні визначається: t
= Ас + (30-50) ºС = 745 + (30-50) ºС = 775-795 ºС.Тривалість нагріву повинна забезпечити досягнення деталями заданої температури і необхідне насичення аустеніту вуглецем. Для підшипникових сталей, що піддаються неповному гартуванню, час нагріву істотно впливає на якість гартування, оскільки при нагріві і витримці відбувається безперервне насичення твердого розчину.
Витримка під час нагріву під гартування повинна забезпечити прогрівання ролика наскрізь та отримання в структурі однорідного аустеніту. Час витримки складає 35 - 40 хвилин.
Оптимальним гартувальним середовищем під час термічної обробки роликів підшипника є масло, охолоджуюча здібність якого в області мартенситного перетворення мала. Це зменшує небезпеку утворення тріщин й загартовочних деформацій. Для гартування роликів застосовують мінеральне масло марок И – 12А, И – 20А [1].
Відпустк є остаточною операцією термічної обробки, що визначає якість готових деталей підшипників. Завдяки йому досягається підвищення в'язкості, розмірна і структурна стабільність деталей.
Для відпуска використовують злектропечи опору з примусовою циркуляцією повітря, калориферні печі і масляні вани. Загартовані деталі слід піддавати відпустці відразу або, принаймні, не пізніше, ніж через 3 год після гартування.
Відпустк повиннен забезпечити підвищення в'язкості сталі за рахунок зменшення тетрагональності мартенситу і внутрішньої напруги без інтенсивного розпаду залишкового аустеніту, що супроводжується падінням ударної в'язкості. Інтенсивннй розпад аустеніту в сталі ШХ15 починається при температурах вище 175 °С.
Відпуск проводять при температурі 150-160 ºС тривалістю 2-3 години. Твердість сталі після такої обробки складає 60-65HRC.
Найкращі експлуатаційні властивості (поєднання високих меж контактної витривалості і зносостійкості) після гартування і відпуска забезпечує мікроструктура скритогольчатого або дрібногольчатого мартенсіту і дрібних глобулярних карбідів, однакових по величині і рівномірно розподілених (рисунок 2.7, а).
Низька прогартованість, недостатня температура і витримка під час нагріву, а також швидкість охолодження, високий ступінь хімічної неоднорідності можуть з'явитися причиною появи троаститних ділянок. Висока температура нагріву, велика схильність до зростання аустенітного зерна і вузький інтервал температур гартування викликають значне зростання голок мартенсіту і збільшення кількості залишкового аустеніту. Крупноїгольчатий мартенсіт, велика кількість троаститу і залишкового аустеніту приводять до погіршення механічних властивостей сталі і зниженню її контактної витривалості.
Тому в підшипниковій промисловості вимоги до мікроструктури регламентовані фотоеталонами, що передбачають допустиму величину гольчатості мартенситу і ділянок троастита залежно від умов роботи підшипників.
У мікроструктурі скритно- і дрібногольчатого мартенсіту розрізняють темно- і світлотравимі ділянки, походження яких пов'язане з хімічною неоднорідністю сталі і різним вмістом хрому в цементиті. Під час нагріву під гартування відбувається переважне розчинення дрібних частинок збідненого хромом цементиту тоді як крупніші частинки не розчиняються. Ділянки, в яких сконцентрована більша кількість карбідів, травимі сильніше внаслідок деякого збіднення твердого розчину хромом. Ділянки, в яких карбіди розчинилися, відрізняються більшою мірою гольчатості, великою кількістю залишкового аустеніту і травимі світліше. Залишки карбідної сітки і структурна смужчатість в загартованих деталях не повинні перевищувати норм стандартів на сталь.
Глибину зневуглецьованого шару визначають металографічним методом і засобом вимірювання твердості (ГОСТ 1763-68). Глибина не повинна перевищувати половини припуска на шліфування. Для неробочих поверхонь, які після гартування не шліфуються, глибину зневуглецьованого шару не регламентують.
Точно оцінити в загартованій шарикопідшипниковій сталі можна тільки шар, зневуглецьований до фериту, оскільки при цьому помітна його чітка межа з нормальною мартенситною структурою [13]
В таблиці 2.3 наведено вплив температури відпуска на твердість сталі ШХ15.
Таблиця 2.3 - Вплив температури відпуска на твердість сталі ШХ15 [17]
Марка сталі | Тривалість відпуска, год | HRC при температурі відпуска, ºС | |||
150 | 175 | 200 | 250 | ||
ШХ15 | 246 | 6362,562 | 626161 | 605959 | 585757 |
Відпуск при температурах вищих за 150-160 ºС призводить до зниження твердості і знижує опір зносу ролика.
В таблиці 2.4 наведені механічні властивості сталі ШХ15 після гартування та низькотемпературного відпуску [17].
Таблиця 2.4 – Механічні властивості сталі ШХ15
Режим термічної обробки | , МПане менш | ,МПане менш | , % | , % | KCU, Дж/см | HRC (HB)Не більш |
Відпал | 370-410 | 590-730 | 15-25 | 35-55 | 44 | 179-207 |
Гартування (800 ºС) в маслі. Відпуск(150ºС) на повітрі | 1670-1700 | 2160-2200 | — | — | 5 | 60-65 |
При контролі якості термічної обробки деталей підшипників перевіряються наступні параметри.
Після остаточної термічної обробки твердість роликів із сталі ШХ15 повинна бути в межах НRС61—65.
Злам деталей контролюється для оцінки якості термічної обробки, виявлення перепалу при куванні і штампуванні. При задовільному гартуванні злам матово-сірий, фарфоровидний, шовковистий. Злам з помітною зернистістю є ознакою перегріву сталі. Скалкуватий злам характеризує неповне гартування сталі.
Мікроструктуру перевіряють на оптичних мікроскопах при збільшеннях в 500 - 600 разів і при задовільній термічній обробці вона повинна містити скрытокристаллический мартенсіт і рівномірно распределенние избнточные карбіди, Наявність трооститу свідчить про недостатній нагрів або інтенсивність охолоджування. Перегрів виявляється по появленню помітної голкової мартенсіту.
Наявність тріщин перевіряють на дефектоскопах (магнітних, люмінесцентних, ультразвукових та ін.). Тріщини в деталях підшипників не допускаються.
На підшипникових заводах все ширше використовують прибори неруйнуючого контролю якості термічної обробки [13].
2.4 Фазові та структурні перетворення під час нагріву сталі ШХ15