В зависимости от соотношения времени пролета и периода СВЧ-колебаний, а также от значений постоянного напряжения

и амплитуды высокочастотного напряжения

могут быть реализованы следующие доменные режимы: пролетный, режим с задержкой домена, режим с подавлением (гашением) домена. Процессы, происходящие в этих режимах, рассмотрим для случая работы диода Ганна на нагрузку в виде параллельного колебательного контура с активным сопротивлением

на резонансной частоте и питанием диода от генератора напряжения с малым внутренним сопротивлением (см. рис.4,а). При этом напряжение на диоде изменяется по синусоидальному закону. Генерация возможна при

.
При малом сопротивлении нагрузки, когда

, где

–сопротивление диода Ганна в слабых полях, амплитуда высокочастотного напряжения

невелика и мгновенное напряжение на диоде превышает пороговое значение (см. рис.4,б кривая 1). Здесь имеет место рассмотренный ранее пролетный режим, когда после формирования домена ток через диод остается постоянным и равным

(см. рис. 9.39, в). При исчезновении домена ток возрастает до

. Для GaAs

. Частота колебаний в пролетном режиме равна

. Так как отношение

мало, к.п.д. генераторов на диоде Ганна, работающих в пролетном режиме, невелик и этот режим обычно не имеет практического применения.
При работе диода на контур с высоким сопротивлением, когда

, амплитуда переменного напряжения

может быть достаточно большой, так что в течение некоторой части периода мгновенное напряжение на диоде становится меньше порогового (соответствует кривой 2 на рис.4,б). В этом случае говорят о
режиме с задержкой формирования домена. Домен образуется, когда напряжение на диоде превышает пороговое, т. е. в момент времени

(см. рис.4, г). После образования домена ток диода уменьшается до

и остается таким в течение времени пролета

домена. При исчезновении домена на аноде в момент времени

напряжение на диоде меньше порогового и диод представляет собой активное сопротивление

. Изменение тока пропорционально напряжению на диоде до момента

, когда ток достигает максимального значения

, а напряжение на диоде равно пороговому. Начинается образование нового домена, и весь процесс повторяется. Длительность импульса тока равна времени запаздывания образования нового домена

. Время формирования домена считается малым по сравнению с

и

. Очевидно, что такой режим возможен, если время пролета находится в пределах

и частота генерируемых колебаний составляет

.
При еще большей амплитуде высокочастотного напряжения, соответствующей кривой 3 на рис.4,б, минимальное напряжение на диоде может оказаться меньше напряжения гашения диода

.В этом случае имеет место
режим с гашением домена (см. рис.4, д). Домен образуется в момент времени

и рассасывается в момент времени

, когда

.Новый домен начинает формироваться после того, как напряжение превысит пороговое значение. Поскольку исчезновение домена не связано с достижением им анода, время пролета электронов между катодом и анодом в режиме гашения домена может превышать период колебаний:

. Таким образом, в режиме гашения

. Верхний предел генерируемых частот ограничен условием

и может составлять

.
Электронный к.п.д. генераторов на диодах Ганна, работающих в доменных режимах, можно определить, раскладывая в ряд Фурье функцию тока

(см. рис.4) для нахождения амплитуды первой гармоники и постоянной составляющей тока. Значение к.п.д. зависит от отношений

,

,

,

и при оптимальном значении

не превышает для диодов из GaAs 6% в режиме с задержкой домена. Электронный к.п.д. в режиме с гашением домена меньше, чем в режиме с задержкой домена.
Режим ОНОЗ.
Несколько позднее доменных режимов был предложен и осуществлен для диодов Ганна режим ограничения накопления объемного заряда. Он существует при постоянных напряжениях на диоде, в несколько раз превышающих пороговое значение, и больших амплитудах напряжения на частотах, в несколько раз больших пролетной частоты. Для реализации режима ОНОЗ требуются диоды с очень однородным профилем легирования. Однородное распределение электрического поля и концентрации электронов по длине образца обеспечивается за счет большой скорости изменения напряжения на диоде. Если промежуток времени, в течение которого напряженность электрического поля проходит область ОДП характеристики

, много меньше времени формирования домена

, то не происходит заметного перераспределения поля и объемного заряда по длине диода. Скорость электронов во всем образце «следует» за изменением электрического поля, а ток через диод определяется зависимостью скорости от поля (рис.7).
Таким образом, в режиме ОНОЗ для преобразования энергии источника питания в энергию СВЧ-колебаний используется отрицательная проводимость диода. В этом режиме в течение части периода колебаний длительностью

напряжение на диоде остается меньше порогового и образец находится в состоянии, характеризуемом положительной подвижностью электронов, т. е. происходит рассасывание объемного заряда, который успел образоваться за время, когда электрическое поле в диоде было выше порогового.
Условие слабого нарастания заряда за время

приближенно запишем в виде

, где

;

–среднее значение отрицательной дифференциальной подвижности электронов в области

. Рассасывание объемного заряда за время

, будет эффективным, если

и

, где

;

и

–постоянная времени диэлектрической релаксации и подвижность электронов в слабом поле.