Смекни!
smekni.com

Управление шаговым двигателем микропроцессорной системой (стр. 1 из 3)

Введение

Развитие микроэлектроники и широкое применение её изделий в промышленном производстве, в устройствах и системах управления самыми разнообразными объектами и процессами является в настоящее время одним из основных направлений научно-технического прогресса.

Использование микроэлектронных средств в изделиях производственного и культурно-бытового назначения не только приводит к повышению технико-экономических показателей изделий (стоимости, надёжности, потребляемой мощности, габаритных размеров) и позволяет многократно сократить сроки разработки и отодвинуть сроки "морального старения" изделий, но и придаёт им принципиально новые потребительские качества (расширенные функциональные возможности, модифицируемость, адаптивность и т.д.).

За последние годы в микроэлектронике бурное развитие получило направление, связанное с выпуском однокристальных микроконтроллеров, которые предназначены для "интеллектуализации" оборудования различного назначения. Однокристальные микроконтроллеры представляют собой приборы, конструктивно выполненные в виде БИС и включающие в себя все оставшиеся части "голой" микро-ЭВМ: микропроцессор, память программ и память данных, а также программируемые интерфейсные схемы для связи с внешней средой. К настоящему времени более двух третей мирового рынка микропроцессорных средств составляют именно однокристальные микроконтроллеры.

В данном курсовом проекте необходимо разработать микропроцессорную систему, осуществляющую управление шаговым двигателем.


1. Описание работы устройства

Контроллер ШД, реализуемый на базе микроконтроллера серии МК51, представляет собой устройство позволяющее управлять ШД в шаговом режиме, режиме плавного ускорения и торможения.

Рис.1 Функциональная схема системы

В данное устройство входит клавиатура состоящая из 12 клавиш, индикатор и драйвер ЩД.

При включении питания системы, она начинает опрашивать клавиатуру. После ввода числового значения с клавиатуры система выводит его на индикатор и затем отрабатывает введенное число шагов путем выдачи последовательности импульсов с нарастающей, а затем убывающей частотой на драйвер ШД.

2. Разработка принципиальной схемы

Необходимо определить перечень устройств и элементов, которые будут входить в аппаратную часть.

При выборе микроконтроллера руководствуемся тем, что для нашей системы необходим наиболее простой контроллер на базе МК51, выбираем микроконтроллер AT89C51 с 4 килобайтами внутреннего ПЗУ фирмы Atmel, как наиболее подходящий по цене и возможностям.

Микроконтроллер семейства АТ89 фирмы Atmel представляет собой восьмиразрядную однокристальную микроЭВМ с системой команд MCS-51 фирмы Intel. Микроконтроллеры изготавливаются по КМОП (CMOS) технологии и имеют полностью статическую структуру.

Отличительные особенности:

- Совместимость с приборами семейства MCS-51

- Емкость перепрограммируемой Flash памяти: 4 Кбайт, 1000 циклов стирание/запись.

- Диапазон рабочих напряжений от 2,7 В до 6 В

- Полностью статический прибор - диапазон рабочих частот от 0 Гц до 24 Мгц

- Двухуровневая блокировка памяти программ

- ОЗУ емкостью 128 байтов

- 31 программируемых линий ввода/вывода

- 2 16-разрядных таймера/счетчика событий

- Пять источников сигнала прерывания

- Промышленный (-40°С...85°C) и коммерческий (0°C...70°C) диапазоны температур

- 40-выводные корпуса PDIP и SOIC

Описание:

КМОП микроконтроллер АТ89С51, оснащенный Flash программируемым и стираемым ПЗУ, совместим по системе команд и по выводам со стандартными приборами семейства MCS-51. Микроконтроллер содержит 4 Кбайта Flash ПЗУ, 128 байтов ОЗУ, 32 линии ввода/вывода, два 16-разрядных таймера/счетчика событий, полнодуплексный порт (UART), пять векторных двухуровневых прерываний, встроенный прецизионный аналоговый компаратор, встроенные генератор и схему формирования тактовой последовательности. Программирование Flash памяти программ ведется с использованием напряжения 12 В, ее содержимое может быть защищено от несанкционированных записи/считывания. Имеется возможность очистки Flash памяти за одну операцию, возможность считывания встроенного кода идентификации. Потребление в активном режиме на частоте 12 МГц не превышает 15 мА и 5,5 мА при напряжении питания 6 В и 3 В, соответственно.

Назначение выводов:

VCC: напряжение Питания.

GND: общий провод.

Порт 1: Восьми битный квази двунаправленный порт ввода/вывода: каждый разряд порта может быть запрограммирован как на ввод, так и на вывод информации, независимо от состояния других разрядов.

Порт 2: Восьми битный квази двунаправленный порт, аналогичный Р1; кроме того, выводы этого порта используются для выдачи адресной информации при обращении к внешней памяти программ или данных.

Порт 3: Восьми битный квази двунаправленный порт, аналогичный Р1; кроме того, выводы этого порта могут выполнять ряд альтернативных функций, которые используются при работе таймеров, последовательного порта ввода-вывода, контроллера прерываний и внешней памяти программ и данных.

Вывод порта Альтернативная функция

P3.0 RXD (вход последовательного порта)

P3.1 TXD (выход последовательного порта)

P3.2 INT0 (внешнее прерывание)

P3.3 INT1 (внешнее прерывание)

P3.4 T0 (таймер 0 внешний ввод)

P3.5 T1 (таймер 1 внешний ввод)

Порт 0: Восьми битный квази двунаправленный порт ввода/вывода информации: при работе с внешними ПЗУ и ОЗУ по линиям порта в режиме временного мультиплексирования выдается адрес внешней памяти, после чего осуществляется передача или прием данных.

RST: вход сброса. На всех выводах ввода/вывода устанавливается сигнал логической 1, как только RST перейдет в состояние логической 1. Высокий логический уровень на входе RST должен удерживаться в течении двух машинных циклов для надежного сброса устройства.

XTAL1: вход инвертирующего усилителя тактового генератора и вход внешнего тактового сигнала.

XTAL2: выход инвертирующего усилителя генератора.

Рис. 2 Описание выводов.

Характеристики Генератора

XTAL1 и XTAL2 - вход и выход, соответственно, инвертирующего усилителя, который может быть настроен для использования как внутренний генератор, как показано в Рис. 3. Может использоваться кварцевый или керамический резонатор.

Примечание:

Рис. 3 Схема подключения резонатора

C1, C2 = 30 pF +/- 10 pF для кварцевых резонаторов,

40 pF +/- 10 pF для керамических резонаторов

Предельные допустимые параметры:

Рабочая температура ............................................................ -55°C +125°C

Температура хранения ......................................................... -65°C +150°C

Напряжение на любом выводе относительно земли ............. -1.0В +7.0В

Максимальное напряжение питания ....................................... 6.6В

Выходной ток (лог 0) ..................................................................25.0 мАПодключаем вход RST через конденсатор на +5 В. В качестве конденсатора С6, выбираем конденсатор марки К50-6–50В–1мкФ

10%. Для подключения осциллятора выбираем конденсаторы С7, С8 марки КМ-5Б-160В-30 пФ
10%, и кварц РК374 МД-6-ВС (11.059200 МГц).

Выбор индикатора:

Среди 7-сегментных ЖКИ – модулей наибольшее распространение получили модули на основе контроллера HT1611 (или HT1613). Они имеют 10 знакомест и управляются по последовательной шине.

Назначение выводов AL-801LCD

1 12/24 переключение формата времени

2 Vss общий

3 SK тактовая линия шины

4 DI линия данных шины

5 HK переключение часы/индикатор

6 S1 установка времени

7 S2 выбор режима установки времени

8 TMR сброс таймера

9 Vdd напряжение питания

Блок-схема алгоритма работы индикатора:

При использовании модуля в микроконтроллерной системе только для отображения загружаемых по последовательной шине символов, требуется соединить вывод HK с общим проводом, а выводы 12/24, S1, S2 и TMR оставить свободными. Временная диаграмма передачи данных по последовательной шине приведена на рисунке, где ta – время установки данных (>1 мкс), tb – время удержания данных (>2 мкс), tc – интервал между символами (>5 мкс).

Данные подаются на линию DI и защелкиваются по спаду тактовых импульсов на линии SK. Символы отображаются в крайней правой позиции, уже имеющиеся на индикаторе символы сдвигаются влево. После того, как все необходимые данные переданы, линию SK следует оставить в состоянии низкого логического уровня, чтобы предотвратить автоматический переход модуля в режим отображения значения таймера.

Каждый символ кодируется 4-мя битами, поэтому всего имеется 16 символов.

Нужно отметить, что напряжение питания индикатора сильно влияет на контрастность. При низком напряжении контрастность недостаточна, а при большом засвечиваются погашенные сегменты. Оптимум находится в промежутке 1.50 ... 1.65 В. Распространенная схема питания, где в качестве источника образцового напряжения используются диоды в прямом включении (рисунок a), не позволяет получить оптимальную контрастность, так как двух диодов оказывается мало, а трех – много. Тем более, желательно иметь возможность регулировки этого напряжения. Простая схема на одном транзисторе позволяет получить нужное напряжение питания и регулировать его (рисунок b).