Смекни!
smekni.com

Разработка технологического процесса изготовления детали Основа излучателя (стр. 3 из 6)

Номер перехода Содержание перехода
А Установить деталь в центра с упором плавающего центра в правый торец.
1 Обточить поверхность до Æ35 согласно чертежу.
Б Снять деталь.

Таблица 12. Переходы токарной операции (8).

Номер перехода Содержание перехода
А Установить деталь в центра с упором плавающего центра в левый торец.
1 Нарезать резьбу М34х1,5-8qрезцом согласно чертежу.
Б Снять деталь.

Наконец переходим к осевым отверстиям и внутренним поверхностям (операции 9,10):


Таблица 13. Переходы токарно-револьверной операции (9).

Номер перехода Содержание перехода
А Установить деталь в цанговый патрон с упором в левый торец.
1 Сверлить отверстие Æ8 напроход.
2 Расточить отверстие с 8 до 14,5 на глубину 30.
3 Расточить канавку шириной 3 до 17, выдерживая 20.
4 Расточить фаску 1,5х45 о.
5 Нарезать резьбу М16х1,5-7Н лев. метчиком согласно чертежу.
Б Снять деталь.

Таблица 14. Переходы токарной операции (10).

Номер перехода Содержание перехода
А Установить деталь в цанговый патрон с упором в правый торец.
1 Расточить коническое отверстие с Æ31 до Æ8 под углом 65 о.
Б Снять деталь.

Требуется просверлить отверстия 4,2.

Таблица 15. Переходы сверлильной операции (11).

Номер перехода Содержание перехода
А Установить деталь в кондуктор.
1 Сверлить отверстие Æ4,2 сквозное согласно чертежу.
Б Снять деталь.

Необходимо фрезеровать пазы:

Таблица 16. Переходы фрезерной операции (12).

Номер перехода Содержание перехода
А Установить деталь в цанговый патрон с упором в правый торец.
1 Фрезеровать пазы шириной 6 в размер 35,5 согласно чертежу.
Б Снять деталь.

Затем требуется просверлить отверстия Æ4, Æ3, Æ5 на проход. Операции производятся с применением кондуктора, повышающего точность сверления.

Таблица 17. Переходы токарной операции (13).

Номер перехода Содержание перехода
А Установить деталь в кондуктор.
1 Сверлить отверстие Æ3 сквозное согласно чертежу.
Б Переустановить деталь в кондукторе, повернув вокруг оси на 180 о.
2 Сверлить отверстие Æ3 сквозное согласно чертежу.
В Снять деталь.

Таблица 18. Переходы сверлильной операции (14).

Номер перехода Содержание перехода
А Установить деталь в кондуктор.
1 Сверлить отверстие Æ5 сквозное согласно чертежу.
Б Снять деталь.

Таблица 19. Переходы сверлильной операции (15).

Номер перехода Содержание перехода
А Установить деталь в кондуктор.
1 Сверлить отверстие 3 сквозное согласно чертежу.
Б Снять деталь.

Последней операцией контролируется несоосность поверхностей М30 относительно Æ31,9. Для этого используется специальное приспособление.

Таблица20. Переходы контрольной операции (16).

Номер перехода Содержание перехода
А Установить деталь в приспособление для измерения несосности.
1 Вращая деталь на 360о , контролировать величину несоосности поверхностей М30 относительно Æ31,9.

На этом разработку технологического процесса можно считать оконченной.

4.2 Расчет погрешностей базирования

При выборе технологических баз были приняты во внимание следующие принципы: принцип единства баз – когда конструкторская, технологическая и измерительная базы представляют одну и ту же поверхность детали, принцип постоянства баз – использование одной и той же технологической базы. Так же учтено то, что необработанные поверхности должны приниматься за базу только один раз на черновых операциях – черновые базы.

Приведенные условия по возможности были выполнены, однако есть такие операции, где их выполнение по различным причинам невозможно. В этом случае возникает погрешность базирования при изготовлении детали.

Погрешности обработки складываются из погрешности установки детали e у , погрешности статической настройки системы СПИД – D С.Н. и погрешности динамической настройки системы СПИД – D Д.Н. . В свою очередь погрешность установки складывается из погрешности базирования ed и погрешности закрепления eЗ.

Основной задачей при расчете точности является обеспечение допуска d, заданного чертежом.

Оценка выбранного способа базирования заключается в определении фактической погрешности e УФ при выбранной технологической базе и сравнении ее с допустимой погрешностью базирования, определяемой по неравенству (5.2.1) [1]


(5.2.1)

Очевидно, что

e уф£e у. (5.2.2)

Рассчитаем погрешность базирования на токарную чистовую операцию (5)

Как видно из операционного эскиза на эту операцию (с.м. лист 2 приложения), технологическая база не совпадает с конструкторской базой для обрабатываемых поверхностей. Возникающие при обработке погрешности определяются допуском на размер, соединяющий конструкторскую и технологическую базы [1]:

ed10 = d 152=0.1

ed25 = d 152=0.1

Для оценки погрешности размера 35, составим размерную цепь [1]

 152

А 10 25




edА = АMAX-АMIN = 35,18 - 34,82 = 0,36 мм

где:

AMAX=10MAX + 25MAX =10,075 + 25,105=35,18 мм

AMIN=10MIN + 25MIN = 9,925+24,895=34,82 мм

Просчитаем допустимую погрешность базирования на размер 35 – А, 10 , 25:

=
=0.34 мм

=
=0.105 мм

=
=0.16 мм

Статические и динамические погрешности настройки станка взяты из таб. 11 (стр. 29) и таб. 24 (стр. 70) [3]

Как видим, неравенство (5.2.2) соблюдено. Допуск на размер 152 удовлетворяет условиям для получения точного размера 35 .

4.3 Определение припусков и межоперационных размеров

Заготовка, предназначенная для последующей механической обработки, изготовляется с припуском на размеры готовой детали, т.е. припуском на обработку. Припуском называется слой материала, удаляемый с поверхности заготовки в целях достижения заданных свойств обрабатываемой поверхности.

Минимальный симметричный припуск при обработке наружних и внутренних поверхностей вращения [1]

(5.3.1)

Минимальный симметричный припуск при обработке противолежащих плоских параллельных плоскостей у заготовок с одной установки определяется по выражению [1]

(5.3.2)

Минимальный асимметричный припуск [1]

(5.3.3)

где: Rzi-1 – высота микронеровностей поверхности по ГОСТ 2789-73, полученный на предшествующей операции.

Ti-1 – глубина дефектного поверхностного слоя, полученного на предшествующей операции.

ri-1 – суммарное значение пространственных отклонений взаимосвязанных поверхностей, получившихся после выполнения предшествующей операции.

ei – погрешность установки заготовки, возникающая на выполняемой операции.

Для установки в центрах формула примет вид :

(5.3.4)

Пространственные отклонения прутковых заготовок при обработке внешних поверхностей – изогнутость оси r ко (кривизна) и погрешность зацентровки rц.

(5.3.5)

Общая кривизна заготовки определяется по формуле

r ко = DК L(5.3.6)

где DК – удельная кривизна проката в мкм/мм, принимаемая из ГОСТ на сортамент. Из таб. 4 (стр. 180) [3] принимаем DК=1.3 мкм/мм.

L – длина заготовки.

Рассчитаем припуск на один из точных поверхностей – диаметр 31,9-0.025 .

Общая кривизна заготовки

r ко=1.3 х 152=197,6 мкм.