Высокая прочность затрудняет процесс холодной штамповки стали, поэтому верхние значения временного сопротивления для штампуемой стали ограничиваются величиной 40—80 кгс/мм2. Однако получают качественные изделия из металла с временным сопротивлением до 90—110 кгс/мм2.
Величина относительного сужения считается основным показателем пластичности штампуемого металла.
Считается, что при Ψ больнее 60% сталь весьма пластична, при Ψ от 50% до 60% сталь достаточно пластична, при Ψ меньше 50% сталь не пригодна для холодной штамповки.
С уменьшением отношения предела текучести к временному сопротивлению повышается пластичность стали. Наилучшей штампуемостью обладает сталь, имеющая отношение предела текучести к временному сопротивлению 0,65.
Необходимо отметить, что при определении механических свойств металла дефекты поверхности (плены, закаты, риски, волосовины и пр.), вызывающие появление трещин при высадке, не оказывают влияния на результаты испытаний, т. е. на измеряемые характеристики. Поэтому при наличии значительного количества поверхностных дефектов металл даже с высокими значениями Ψ и малыми значениями предела прочности и имеющий оптимальную структуру может оказаться совершенно непригодным для холодной штамповки.
Влияние поверхностных дефектов устанавливается испытанием на осадку до половины первоначальной высоты образца. Практически этот метод не позволяет в полной мере оценить влияние дефектов на процесс штамповки, так как степень деформации при холодной штамповке значительно превышает степень деформации при осадке до половины высоты. При штамповке болтов с нормальной головкой относительная деформация головки может достигать 80%. Испытание на осадку до четверти первоначальной высоты позволяет лучше оценить пригодность металла для холодной штамповки, однако и оно не во всех случаях может гарантировать необходимое качество металла, так как при этом не учитывается неравномерность распределения дефектов по длине прутка (бунта).
5 СОРТАМЕНТ СТАЛИ ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К НЕЙ
(Госты указаны старые)
Металлургические заводы поставляют горячекатаный металл с отклонениями на диаметр по ГОСТ 2590—71.
При холодной штамповке болтов на прессах-автоматах диаметр исходной заготовки должен соответствовать 3- и 4-му классам точности.
Использование металла с большим полем допуска, чем для указанных классов точности, вызывает ухудшение качества отрезки и может привести к несоосности заготовки и канала матрицы, к недостаточному зажиму ее в ручье инструмента. Следствием этого является снижение качества штампуемых болтов (увеличение несоосности головки и стержня, дефекты поверхности торцов). Увеличение диаметра заготовки затрудняет заталкивание ее в канал матрицы, что может привести к изгибу заготовки.
Кроме того, при использовании горячекатаной мягкой стали (малоуглеродистой) снижается устойчивость высаживаемой части заготовки, происходит налипание металла на инструмент, Что снижает стабильность технологического процесса и вызывает ухудшение качества болтов. При штамповке заготовка должна полностью и равномерно заполнять отверстие матрицы, мягкая сталь деформируется неравномерно, что способствует изгибу стержня болта.
Для устранения этих явлений для холодной штамповки на прессах-автоматах используют калиброванный металл круглого сечения диаметром от 3 до 30—35 мм преимущественно в виде бунтов или реже (при диаметре свыше 25—30 мм)—в прутках. Технические требования на исходную заготовку регламентируются ГОСТ.
10702—63. «Сталь для холодной высадки», ГОСТ 1050—74. «Сталь углеродистая качественная конструкционная», ГОСТ 380—71. «Сталь углеродистая обыкновенного качества», ГОСТ 4543—71 «Сталь легированная конструкционная». Сортамент калиброванного металла регламентируют ГОСТ 10702—63, ГОСТ 7417—75. Преимущественное применение для штамповки имеет сталь по ГОСТ 10702—63.
Калиброванная сталь для штамповки болтов поставляется в нагартованном (наклепанном) состоянии. Наклеп возникает за счет обжатия при волочении горячекатаной стали. Твердость нагартованной стали, величины временного сопротивления и относительного сужения не должны превышать норм, установленных соответствующими стандартами.
Поверхность калиброванной стали должна быть чистой, гладкой, светлой или матовой без трещин, волосовин, закатов, плен, окалины. Допускаются отдельные мелкие риски механического происхождения в пределах '/4 предельных отклонений на диаметр, а также отдельные вмятины и рябизна в пределах полусуммы допусков.
Макроструктура не должна иметь усадочной раковины п рыхлости, трещин, пузырей, расслоений, неметаллических включений и флокенов, видимых без применения увеличительных приборов при проверке на изломах или протравленных образцах.
Необходимо отметить, что показатели, нормируемые стандартами, и, в частности, ГОСТ 10702—63, не полностью удовлетворяют требованиям к металлу, предназначенному для холодной высадки. Так, величина относительного сужения для ряда сталей нормируется меньшей 50%, испытание на осадку предусмотрено только до половины первоначальной высоты, нет требования обязательной зачистки поверхности и др.
6 ПОДГОТОВКА МЕТАЛЛА К ШТАМПОВКЕ
Металл, предназначенный для штамповки, должен иметь чистую и блестящую поверхность, свободную от окалины, жировых и других загрязнений, и содержать прочно удерживаемую на поверхности технологическую смазку.
Подготовка поверхности заготовки включает операции: очистку поверхности от окалины, жировых и других загрязнений; нанесение подсмазочного слоя (носителя смазки); нанесение технологической смазки.
Прокат или термически обработанный металл имеет на поверхности окисную пленку — окалину, которая должна быть удалена для предупреждения преждевременного износа технологического инструмента и получения чистой и точной заготовки. Основным способом удаления окалины с заготовок, предназначенных для холодной штамповки болтов, является травление.
Травление углеродистых сталей производят главным образом в растворе, содержащем 8—20% серной кис-
Травление меди, латуни Л63, Л62 производят в растворе, содержащем 3—10% H2SO4 при температуре 20—40° С.
Травление алюминиевых сплавов проводят в растворе с 5—10% едкого натра с последующим погружением в раствор с 10—15% азотной кислоты (пассивированием).
После травления для удаления травильного шлама и кислоты металл промывают в горячей и холодной воде. Промывка стальных заготовок в горячей воде производится при температуре 50—70° С в течение 1—2 мин, холодная промывка осуществляется водой под давлением 5—7 ат. в течение 1—2 мин.
Для нейтрализации остатков серной кислоты и уменьшения коэффициента трения при калибровке и холодной штамповке металл подвергается известкованию в растворе, содержащем 3—5% извести (СаО), при температуре 100° С (2—3 погружения). Допускается выработка раствора до концентрации СаО 0,5— 1%. На поверхности металла должна быть сплошная пленка извести. Нейтрализацию кислоты можно производить в водном растворе мыла с концентрацией 0,5—0,8 г/л при температуре раствора 70—80° С в течение 2—3 мин. После нейтрализации с целью предупреждения коррозии металл подвергается сушке при температуре 100—120° С в течение 15—20 мин.
Для повышения надежности сцепления смазки с деформируемым металлом заготовку целесообразно покрывать подсмазочньм слоем. Подсмазочное покрытие способствует снижению трения при штамповке и повышает стойкость штампового инструмента. Особенно эффективно применение подсмазочного слоя при штамповке болтов с редуцированием стержня.
Нанесение подсмазочного слоя производится перед волочением или после волочения (перед штамповкой).
Наибольшее распространение получило нанесение подсмазочного слоя перед волочением, так как при этом слой носителя смазки получается более равномерным по толщине и надежно сцепленным с основным металлом.
Заготовки из углеродистых и низколегированных сталей чаще всего подвергают фосфатированию. Фосфатирование заключается в обработке металла в 2,5— 3%-ном растворе кислой фосфорнокислой соли цинка,
Температура раствора 60—80°С, Продолжительность фосфатирования равна 5—15 мин. Фосфатный слой может деформироваться без разрушения вместе с основным металлом. Фосфатное покрытие действует как непрерывный разделяющий слой между контактными поверхностями инструмента и заготовки, уменьшая трение, предотвращая налипание металла на инструмент и хорошо удерживая смазочное вещество. Фосфатирование в 1,2—1,3 раза снижает усилия деформирования.
Процесс подготовки металла с нанесением фосфатного слоя состоит из следующих операций: 1) травление (при фосфатировании волоченого металла — обезжиривание); 2) промывка водой; 3) фосфатирование; 4) промывка водой; 5) известкование или омыление; 6) сушка.
Фосфатное покрытие считается качественным, если после волочения сохраняется зеркальный цвет (от черного до серого), при этом, чем темнее цвет волочения, тем лучше покрытие.
При подготовке поверхности заготовок из нержавеющих сталей (12Х18Н9Т, 12Х18Н10Т и др.) вместо фосфатирования используют известково-солевое покрытие. Оно не требует дополнительных операций для химического разрушения пленки, образующейся на поверхности нержавеющей стали в процессе травления (пассивирования), и позволяет работать на высоких скоростях при волочении.
Нержавеющие и жаростойкие стали подготавливаются к штамповке по следующей технологии: 1) травление, 2) промывка в горячей воде, 3) пассивирование, 4) промывка в горячей воде, 5) нанесение известково-солевого покрытия, 6) сушка, 7) калибровка.
Известково-солевое покрытие имеет существенные недостатки. Поваренная соль ускоряет процесс коррозии металла, в сырую погоду впитывает влагу и затрудняет процесс волочения. Кроме того, известь очень пылит, засоряет воздух и помещение цеха и тем самым ухудшает условия труда.