Смекни!
smekni.com

Разработка технологического процесса изготовления детали плита нижняя (стр. 3 из 4)

План изготовления плиты нижней пневмо-гидравлического усилителя представлен на листе 05.М15.047.002.010 графической части курсового проекта.

Расчет припусков и операционных размеров

Рассчитываем припуск на обработку самой точной поверхности 1 Ш40Н7 под втулку по эмпирическим формулам аналитическим способом.

Расчетный припуск определяется видом обрабатываемой поверхности, ее размером, методом получения и точностью заготовки, числом переходов, их видовой последовательностью, точностью оборудования и приспособлений, а также экономическими соображениями.

Квалитет точности и допуск обрабатываемой поверхности принимаем по табл. 32, стр. 192 [9]; глубину дефектного слоя и высоту микронеровности поверхностного слоя: для поковки стр. 184 [9].

Для каждого перехода определяем составляющие припуска.

Определяем суммарную величину а = hд + Rz, где Rz - высота неровностей профиля, мм, hд - глубина дефектного слоя, мм.

По формуле D = 0,25Td определяем суммарное отклонение формы и расположения поверхностей после обработки на каждом переходе.

Определяем погрешность установки e заготовки в приспособлении на каждом переходе. ε = 0, т. к. технологические и измерительные базы совпадают.

Определяем предельные значения припусков на обработку для каждого перехода.

Минимальное значение припуска определяем по формуле [4]:

Zimin = ai-1 +


Здесь и далее индекс i относится к данному переходу, i-1 - к предыдущему переходу, i+1 - к последующему переходу.

Z1 min= а +

= 0.36 +
= 0.76

Z2 min= а +

= 0.245 +
= 0.43

Z3 min= а +

= 0,08 +
= 0.245

Максимальное значение припуска определяем по формуле [4]:

Zi max = Zi min + 0,5 ´ (TDi-1 + TDi)

Z1 max = Z1 min + 0,5 ´ (TD0 + TD1) = 0,76 + 0,5 ´ (1.6 + 0,75) = 1.935

Z2 max = Z2 min + 0,5 ´ (TD1 + TD2) = 0,43+ 0,5 ´ (0,75 + 0,66) = 1.138

Z3 max = Z3 min + 0,5 ´ (TDТО + TD3) = 0,245 + 0,5 ´ (0,66 + 0,025) = 0,588

Определяем среднее значение припуска для каждого перехода по формуле:

Zср i = (Zi min + Zi max) / 2

Z1 ср = (0,76 + 1.935) / 2 = 1.348

Z2 ср = (0,45 + 1.138) / 2 = 0.784

Z3 ср = (0,245 + 0,588) / 2 = 0.417

Определяем предельные размеры для каждого перехода по формулам:

Di-1 max = Di max – 2Zimin

Di min = Di max - ITi

Расчет начинаем с последнего, 3-го перехода, для которого на чертеже задан размер Æ 40

.

D3 max = 40.025

D3 min = 40

D2 max = 40.025 – 2.0,245 = 39.535

D2 min = 39.535 – 0,66 = 38.878

D1 maz = 39.535 - 2 . 0,43 = 38.675

D1 min = 38.675 - 0,75 = 37.925

D0 max = 38.675 - 2 . 0,76 = 37.155

D0 min = 37.155 – 1,66 = 36.555

Определяем средние значения размера для каждого перехода по формуле:

Diср = (Di min + Di max) / 2

Dср 0 = (40.025 + 40) / 2 = 40.013

Dср 1 = (39.535 + 38.878) / 2 = 39.206

Dср 2 = (38.675 + 37.925) / 2 = 38.3

Dср 3 = (37.155 + 36.555) / 2 = 36.855

Определяем общий припуск на заготовку:

Z0 min = 0,5 ´ (D3 min – D0 max) 0,5 ´ (40 – 37,155) = 1.422

Z0 max = Z0 min + 0,5 ´ (TD0 + TD3) = 1,422+ 0,5 ´ (1,6 + 0,025) = 2,234

Схема расположения припусков, допусков и операционных размеров для поверхности 1 Ш40Н7

.

Проектирование 05 операции токарной

На 05 токарной операции используется 8-ми позиционный токарный многошпиндельный полуавтомат 1Б284.

Позиции:

I. Загрузочная

II. Точение

III. Точение

IV. Перезагрузка

V. Точение

VI. Точение

Схема позиций обработки и разделение технологических переходов по позициям подробнее представлены в технологическом маршруте табл. 4 и на листе 05.М15.047.002.010 графической части курсового проекта.

Расчет режимов резания по позициям для самых нагруженных резцов:

Позиция I. Загрузка. То = 0 мин, Тшт. = 0.15 мин.

Позиция II. Точение.

Продольный суппорт: S = 0.6 мм; lсуп. = 33 мм;

Поперечный суппорт: S = 0.6 мм; lсуп. = 22 мм;

Расчет штучного времени:

Тшт = Тосн. + Твсп.,

Тосн. =

;

Прод. суппорт Тосн. =

,

Попер. суппорт

Позиция III. Точение.

Продольный суппорт: S = 0.6 мм; lсуп. = 32 мм;

Поперечный суппорт: S = 0.6 мм; lсуп. = 22 мм;

Расчет штучного времени:

Тшт = Тосн. + Твсп.,

Тосн. =

;

Прод. суппорт

Тосн. =

,

Попер. суппорт

Позиция IV. Перезагрузка. То = 0 мин, Тшт. = 0.15 мин.

Позиция V. Точение.

Продольный суппорт: S = 0.6 мм; lсуп. = 31 мм;

Поперечный суппорт: S = 0.8 мм; lсуп. = 36 мм;

Расчет штучного времени: Тшт = Тосн. + Твсп.,

Тосн. =

;

Прод. суппорт

Тосн. =

,

Попер. суппорт

Позиция VI. Точение.

Продольный суппорт:

S = 0.6 мм; lсуп. = 31 мм;

Поперечный суппорт:

S = 0.6 мм; lсуп. = 22 мм;

Расчет штучного времени: Тшт = Тосн. + Твсп.,

Тосн. =

;

Прод. суппорт Тосн. =

,

Попер. суппорт

Таблица 5

Нормы времени на 05 токарную операцию.

№поз Содержание lр.х. Тосн., мин Твсп., мин Тшт., мин
I Загрузочно - разгрузочная - - 0,15 0,15 2,3
II Точение 3322 0,1530,102 0,150,15 0,3030,252 1,11,35
III Точение 3222 0,1450,1 0,150,15 0,2950,25 1,151,36
IV Перезагрузка - - 0,15 0,15 2,3
V Точение 3136 0,190,165 0,150,15 0,340,315 1,08
VI Точение 3122 0,1870,133 0,150,15 0,3370,283 1,011,2

Из табл. 7 видно, что время на позициях отличается, что вызывает необходимость проведения синхронизации.

Позиция II. Поперечный суппорт. Уменьшаем подачу S с 0,6мм до 0,4мм; v = 125м/мин; n = 360об/мин;

То = 22/0,4 . 360 = 0,153мин, Тобщ. = 0,303мин.

Позиция III. Поперечный суппорт. Уменьшаем подачу S с 0,6мм до 0,4мм; v = 125м/мин; n = 369об/мин; длина резания увеличена на 2 мм.

То = 24/0,4 . 369 = 0,163мин, Тобщ. = 0,313мин.

Позиция VI. Поперечный суппорт. Длина резания увеличена на 2 мм.

То = 24/0,6 . 276 = 0,149мин, Тобщ. = 0,3мин.

Таблица 6

Скорректированное время обработки на 05 токарную операцию.

№поз Содержание lр.х. Тосн., мин Твсп., мин Тшт., мин
I Загрузочно - разгрузочная - - 0,15 0,15 2,3
II Точение 3322 0,1530,153 0,150,15 0,3030,303 1,1»11,1»1
III Точение 3224 0,1450,163 0,150,15 0,2950,313 1,15»11,08»1
IV Перезагрузка - - 0,15 0,15 2,3
V Точение 3136 0,190,165 0,150,15 0,340,315 1,08»1
VI Точение 3124 0,1870,145 0,150,15 0,3370,295 1,01»11,15»1

За счет применения двух методов синхронизации достигли выравнивания основного времени обработки на каждой позиции 05 токарной операции (за счет уменьшения подачи и увеличения рабочего хода инструмента).