Аннотация
Дипломный проект посвящен модернизации основного оборудования блока регенерации растворителя на установке депарафинизации масел.
Дипломный проект состоит из пояснительной записки и графической части.
В пояснительной записке приведены: обзор литературы и производственные данные, технико-экономическое обоснование проекта; устройство и принципы работы проектируемого оборудования, технологический и прочностнойрасчеты; освещены вопросы по экономике и организации производства; безопасности и экономичности проекта; ремонту и монтажу оборудования.
В графической части разработаны: технологическая схема установки, сборочный чертеж колонны; сборочный чертеж тарелки, сборочный чертеж теплообменника; чертежи деталей; расположение оборудования; таблица технико-экономических показателей.
Пояснительная записка представлена на листах.
Графическая часть представлена на листах формата А1.
Содержание
Введение
1 Характеристика вопроса по литературным и производственным данным. Технико-экономическое обоснование выбора проектных решений.
1.1. Характеристика исходного сырья и готового продукта.
1.2. Обзор существующих методов регенерации растворителя
1.3.Выбор конструкции проектируемых аппаратов
1.4. Технико-экономическое обоснование проекта
2 Описание технологии производства и конструкций разрабатываемого оборудования
2.1.Устройство и принцип работы колонны
2.2.Устройства и принцип работы теплообменника
2.3.Выбор конструкционных материалов.
3. Расчеты технологического оборудования.
3.1.Технологический расчет колонны.
3.2.Технологический расчет теплообменника.
3.3.Прочностной расчет основных элементов оборудования.
3.3.1.Расчет колонны.
3.3.2.Расчет теплообменника.
4.Расчет и выбор стандартизированного вспомогательного оборудования.
4.1.Подбор насоса.
4.2.Подбор емкости.
5. Монтаж оборудования.
5.1.Монтаж колонны.
5.2.Монтаж теплообменника.
6. Ремонт оборудования.
6.1.Годовой график ППР.
6.2.Ремонт колонны.
6.3.Ремонт теплообменника.
7. Технология изготовления фланца.
8. Автоматизация технологического процесса, выбор средств контроля и регулирования параметров
8.1.Описание технологической схемы блока регенерации растворителя.
8.2.Анализ технологического процесса.
8.3.Разработка совмещенной технологической схемы и выбор основных
средств контроля и регулирования
9 Безопасность и экологичность проекта.
9.1.Характеристика опасных и вредных производственных факторов.
9.2. Санитарно-гигиенические мероприятия
9.3. Электробезопасность. Защита от статического электричества.
Молниезащита.
9.4.Пожарная безопасность.
9.5. Экологичность проекта
9.6. Безопасность в условиях чрезвычайных ситуаций
10. Экономика и организация производства.
10.1. Организационная часть.
10.2. Экономическая часть.
Заключение.
Список использованной литературы.
Приложения.
Приложение 1. Опись чертежей.
риложение 2. Колонна. Спецификация.
Приложение 3. Тарелка. Спецификация.
Приложение 4. Теплообменник. Спецификация.
Введение
До настоящего времени около 90% мирового производства смазочных масел производится на установках депарафинизации. Процесс депарафинизации заключается в удалении из масел высокозастывающих твердых углеводородов – парафинов, с целью получения масел с достаточно низкими температурами застывания.
Депарафинированные масла должны обладать свойствами подвижности (или текучести) при температуре из применения. Свойства подвижности необходимо для применения масел при низких температурах в зимних условиях, для облегчения процесса запуска двигателей, для уменьшения износа трущихся поверхностей деталей двигателей, для возможности обеспечения нормальной циркуляции в аппарате с целью отвода тепла, выделяемого его рабочими узлами. В процессе депарафинизации получают средневязкое, вязкое, высоковязкое, остаточно депарафинированные масла и соответственно выделяются нежелательные компоненты масел в виде гача.
Установка депарафинизации состоит из следующих блоков :
1) отделение кристаллизации – для захолаживания масел;
2) отделение регенерации – предназначено для регенерации растворителя (ацетона) из воды и масел;
3) фильтровальное отделение – для отделения твердых углеводородов;
4) холодильного отделения.
Целью дипломного проекта является повышение производительности блока регенерации растворителя установки 39/2, а также решения вопросов монтажа и ремонта оборудования, безопасности и экологичности проекта, экономики и организации производства.
1. Описание принципиальной технологической схемы блока регенерации растворителя
1.1. Характеристика исходного сырья и готового продукта
В качестве исходного сырья блока регенерации используется обводненный ацетон. В таблице № 1.1.приведены характеристики исходного сырья и готового продукта.
Характеристики исходного сырьятаблица № 1.1.
Наименование | Номер государственного или отраслевого стандарта | Показатели качества, обязательные для проверки | ННорма |
Сырье: обводненный растворитель (ацетон) | _____ | Содержание воды, % об, не более | 440 |
Продукт: ацетон | ГОСТ 2868-89 | Массовая доля ацетона, % об,не менее | 998 |
Ацетон – целевой продукт блока обезвоживания растворителя, представляет собой простейший кетон, бесцветная, легко подвижная жидкость с характерным запахом.
Продукт – ацетон должен отвечать требованиям по ГОСТ 2868-89 по следующим показателям :
а) молекулярный вес – 58,08;
б) плотность при 20˚С, г/см³ - 0,7908;
в) температура кипения при атмосферном давлении, ˚С – 56,2
1.2. Обзор существующих методов регенерации растворителя
В настоящее время подавляющее большинство смазочных масел производится на установках депарафинизации. Процесс депарафинизации заключается в удалении из масел высокозастывающих твердых углеводородов – парафинов, путем его захолаживания и фильтрации через барабанные вакуум-фильтры. Для того, чтобы вязкость масла перед процессом фильтрации уменьшилась, его разбавляют растворителями. Наиболее широкое применение получили такие растворители как ацетон, МЭК. В процессе производства растворитель насыщается водой и к дальнейшему использованию не пригоден, то есть необходимо разделение смеси растворитель-вода. Для разделения любой исходной смеси на две части применяется схема полной ректификационной колонны. В таком аппарате сырье подается в середину колонны, дистиллят обогащенный низкокипящими компонентами отбирается сверху, а остаток обогащенный высококипящими компонентами – снизу колонны. Для создания жидкостного орошения колонна имеет конденсатор вверху и кипятильник внизу. Для выделения небольшого количества высококипящих или легколетучих компонентов или фракций применяют неполные ректификационные
колонны, укрепляющие и отгонные. В укрепляющую колонну сырье подается в паровой фазе под нижнюю тарелку колонны. В полных ректификационных колоннах наряду с подогревателем или вместо его подается водяной пар. В нашем случае, необходимо полное разделение исходной смеси, поэтому выбираем схему полной ректификационной колонны.
1.3. Выбор конструкции проектируемых аппаратов
Выбор конструкции колонны
Выбор проектируемой колонны проводим на основе опыта эксплуатации аналогичных ректификационных колонн [4]. Для удаления воды из растворителя применяются почтиисключительно аппараты колонного типа. Основной задачей при проектировании является оптимальный выбор контактных устройств, которые подразделяются на два основных вида :
- тарельчатые контактные устройства ( колпачковые, клапанные, ситчатые и т.д.);
- насадочные компактные устройства (насыпная насадка, регулярная насадка, вакуумная насадка и т.д.).
При выборе конструкции рабочих элементов колонных аппаратов необходимо считаться с такими факторами как гидравлическое сопротивление, диапазон изменения расходов по жидкой и газовой фазе, при котором аппарат работает устойчиво, простота конструкции и надежность эксплуатации.
На основании технико-экологических показателей и данных заводских испытаний для данного процесса регенерации растворителя наиболее эффективными являются колпачковые тарелки. Поэтому в качестве элемента новизны при модернизации ректификационной колонны вносим замену устаревших S-образных тарелок на колпачковые тарелки. В связи с этим получаем увеличение производительности на 20%, увеличивается степень разделения смеси.
Выбор теплообменника.
Теплообменные аппараты предназначены для проведения процессов теплообмена при необходимости нагревания или охлаждения технологической среды с целью ее обработки или утилизации теплоты.
Теплообменные аппараты можно классифицировать по следующим признакам:
- по конструкции аппараты, изготовленные из труб кожухотрубчатые,«труба в трубе», оросительные, погруженные змеевиковые, воздушного охлаждения); аппараты, поверхность теплообмена которых изготовлена из листового материала с поверхностью теплообмена, изготовленной из неметаллических материалов;
- по назначению – холодильники, подогреватели, испарители, конденсаторы ;
- по направлению движения теплоносителей прямоточные, противоточные, перекрестного тока и др.
Теплообменники типа «труба в трубе» и змеевиковые стальные в общем объеме теплообменной аппаратуры составляют около 8%, а оросительныеоколо 2%. Доля спиральных и пластинчатых теплообменников и АВО пока не велика.
Наиболее большое распространение получили кожухотрубчатыетеплообменники. Они бывают следующих видов :
- теплообменники с неподвижными трубными решетками (тип Н). В кожухе размещен трубный пучок, теплообменные трубы которого развальцованы в трубных решетках. Трубная решетка жесткосоединена с кожухом. С торцов кожух аппарата закрыт распределительными камерами. Кожух и камеры соединены фланцами. Особенностью этих аппаратов является то, что трубы жестко соединены с трубными решетками, а решетки приварены к корпусу (кожуху). В связи с этим исключена возможность взаимных перемещений труб и кожуха.