Смекни!
smekni.com

Промышленное производство катализаторов (стр. 2 из 5)

(3)

где Fос – поверхность образующегося осадка.

Любой осадок полидисперсен. Растворимость мелких кристаллов всегда несколько выше, чем крупных. Соотношение между первичными и вторичными кристаллами и характер упаковки первичных кристаллов в объеме реального вторичного кристалла оказывает существенное влияние на технологию катализаторов (фильтруемость, реологические свойства осадков, усадку при сушке) и их свойства (удельную площадь поверхности, пористую структуру, термостойкость, активность).

Для случая малорастворимых осадков образование кристаллов идет не по механизму кристаллизации через растворение, а по механизму «ориентированного наращивания», включающему три этапа: образование зародышей при распаде полимерной структуры, переход зародышей в центры кристаллизации, наращивание зародышей сначала на определенные грани центра кристаллизации, а далее на такие же грани вторичного кристалла.

По способности к кристаллизации гидроксиды можно разбить на три группы:

Аморфные — практически не кристаллизуются, например силикагель;

Mg(OH)2, Sn(OH)2, Cd(OH)2 кристаллизуются настолько быстро, что аморфную фазу удается наблюдать лишь в особых условиях;

Аморфные гидроксиды Fe, Сu, А1 кристаллизуются сравнительно медленно.

Характер выделяющегося осадка (дисперсность, пористость, форма частиц) определяется температурой осаждения, рН среды, исходным составом раствора, его концентрацией, интенсивностью перемешивания, порядком слива растворов, условиями введения осадителя.

Периодическое осаждение дает неоднородный по составу продукт. Непрерывное осаждение позволяет получить более однородный катализатор. При получении многокомпонентных и многофазных контактных масс из-за различной растворимости осажденных соединений состав твердой фазы в начале и конце осаждения может оказаться неодинаковым. Это бывает, например, при соосаждении смесей гидроксидов металлов из растворов солей. В процессе нейтрализации кислых растворов первым будет выпадать в осадок гидроксид с меньшим значением рН осаждения. Гидроксиды, обладающие близкими значениями рН осаждения, осаждаются одновременно.

Чаще всего применяют периодическое осаждение, при котором в раствор исходных компонентов вливают осадитель. Осаждение проходит при непрерывно изменяющихся условиях (концентрации, рН и др.). Для увеличения однородности осадка иногда ведут осаждение в буферном электролитном растворе, в который подают растворы исходных компонентов, причем скорость подачи одних растворов сохраняется постоянной, а других поддерживают постоянным значением кислотности раствора.

При осаждении из гомогенного раствора в качестве осадителя используют такое соединение, которое в течение некоторого времени образует гомогенный раствор с исходными компонентами (например, карбамид).

Осаждение с задержкой гидролиза используют, когда лимитирующей стадией является гидролиз катиона. Тогда введение в раствор анионов, одинаковых с анионами осаждаемого вещества, способствует замедлению гидролиза, и какое-то время до начала осаждения растворы будут сохраняться гомогенными.

При непрерывном осаждении на протяжении всего процесса в реактор подают растворы исходных компонентов, а из реактора непрерывно отводят получающийся осадок в виде суспензии. Осадок фильтруют либо разделяют твердую и жидкую фазы другими способами.

Фильтрование протекает в ламинарной области. Важной характеристикой осадка, получающегося при фильтровании суспензии, является порозность. В зависимости от свойств осадка и суспензии, а также специфики последующих операций переработки осадка используют фильтры разнообразных конструкций: барабанные, фильтр-прессы. Отделение осадков от жидкой фазы возможно также отстаиванием и центрифугированием.

Наиболее прост в аппаратурном отношении метод отстаивания. При неподвижном стоянии происходит самопроизвольное оседание частиц осадка.

При центрифугировании движущей силой разделения является центробежная сила, под действием которой осадок остается в роторе центрифуги, а жидкость удаляется.

Промывка осадка требуется для удаления нежелательных компонентов, растворенных в фильтрате или адсорбированных на поверхности осадка. При использовании реагентов, образующих в виде побочных продуктов термически нестойкие соли, например нитрат аммония, промывку можно или совсем исключить или проводить неполностью.

Сушка осадка. После фильтрования и промывки осадки содержат обычно около 10—60 % влаги, которую необходимо удалить.

Сушку разделяют на конвективную (соприкосновение осадка с сушильным агентом), контактную (передача теплоты от стенки сушилки к материалу) и электрическую (с использованием токов высокой частоты).

Несколько обособлена сушка распылительная, при которой твердые сухие частицы получают при испарении влаги из диспергируемого на мелкие капли раствора или суспензии. Этот метод позволяет заменить процессы фильтрования, сушки и формования, однако требует больших затрат энергии.

Скорость сушки зависит от характера связи влаги с материалом и механизма ее перемещения из глубины твердого тела к поверхности испарения, порозности осадка. Если находящаяся в осадке влага содержит растворенные вещества, скорость сушки замедляется из-за отложения этих веществ на стенках каналов (пор), что приводит к уменьшению размеров последних.

В процессе сушки поверхность, как правило, уменьшается за счет переконденсации первичных частиц и «зарастания» мест контактов между ними.

Прокаливание катализатора. При прокаливании получается активное вещество катализатора. Условия прокаливания (температура, время, среда) определяют средний диаметр пор и удельную поверхность. Прокаливание обычно проводят при температуре, равной или превышающей температуру каталитической реакции.

Формовка катализатора. Схемы производства осажденных контактных масс различаются способом формовки (рисунок 1).

По схеме А предусмотрена сухая формовка материала методом таблетирования, гранулирования, дробления. Таблетирование и гранулирование требуют измельчения прокаленного катализатора до тонкодисперсного состояния. При плохом гранулировании к порошку добавляют связующие материалы, которые должны быть инертными по отношению к катализируемой реакции и стабильными в условиях процесса.

Для катализаторов, получаемых по схеме Б, пригодны различные способы формовки влажной пасты, изложенные выше. Разнообразная формовка позволяет получать частицы любой формы и размеров, регулировать поверхность и пористость катализатора, изменять его механическую прочность. Износоустойчивые контактные массы, используемые для работы в кипящем слое, лучше формовать методом коагуляции.

Катализаторы на основе природных глин, цеолитов, ионообменных смол

Природные катализаторы и их активация

В качестве природных катализаторов (крекинг, полимеризация) используют боксит, кизельгур, железную руду, различные глины. Природные катализаторы дешевы, технология их сравнительно проста. Она включает операции размола, формовки гранул, их активацию. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой раствором щелочи или кислоты при повышенных температурах. При активации увеличивается площадь поверхности контактной массы.

Наибольшее применение природные глины - смеси различных алюмосиликатов и продуктов их замещений, с включениями песка, известняка, оксидов железа, слюды, полевых шпатов. При химической обработке повышается кислотность глин, происходит образование дополнительных пор, увеличивается общая пористость и удельная площадь поверхности.

Процесс производства катализатора включает следующие стадии: подготовку глины, активацию ее серной кислотой, промывку, фильтрование и пластическую обработку, гранулирование, сушку и прокалку (рисунок 2). Сырую глину подсушивают до содержания влаги 10 - 15 % в камерных сушилках 1 и подают в реактор 3 на активацию, которую осуществляют 13 % H2S04 при температуре 100 °С в течение 6 ч.

Рисунок 2 – Схема производства катализатора из бентонитовых глин:

1 – камерные сушилки, 2 – ковшевой элеватор, 3 – реактор с мешалкой, 4 – емкость для промывки, 5 – фильтр-пресс, 6 – барабанная сушилка, 7 – мельница, 8 – бегуны, 9 – валковая машина, 10 – гранулятор, 11 – шахтная печь

После активации глину промывают водой, время отстаивания 12 -16 ч. Требуется 5 - 6 циклов. Промытую суспензию отфильтровывают на прессе 5 и с содержанием влаги 55 - 58 % и направляют на блок сухих операций.

Гранулирование катализаторной массы в таблетки возможно при влажности ее 47 - 49 %. Для этого часть массы подсушивают, истирают в мельнице 7 и смешивают с оставшейся влажной частью. Для обеспечения однородности и пластичности смесь глины и порошка растирают в бегунах в течение 20 мин, после чего дополнительно пластифицируют на валковой машине 9. Далее массу формуют. Таблетки подсушивают в камерных сушилках 1 до содержания влаги 10 - 14 % и прокаливают 20 - 22 ч в шахтной печи при 630 - 650 0С. Остаточная влажность катализатора — 0,06—0,8 %.

Цеолитные катализаторы

Цеолитные катализаторы используют для проведения реакций: крекинг, гидрокрекинг, изомеризация, алкилирование, гидрирование, дегидрирование, окисление. Цеолитные катализаторы термически стабильны, устойчивы к контактным ядам (сернистые и азотсодержащие соединения, металлы), не вызывают коррозии аппаратуры. Развитая поверхность (до 800 м2/г), способность к катионообмену и высокая механическая прочность позволяют использовать их как носители каталитически активной массы.