Смекни!
smekni.com

Обработка заготовок на токарных станках (стр. 5 из 8)

Результатом этого вида изнашивания, происходящего при температурах ниже 900°С, являются кратеры на рабочих поверхностях инструмента, при слиянии которых образуются лунки. При этом действие адгезионного изнашивания усиливается в зоне низких и средних скоростей резания. Уменьшить адгезионное изнашивание можно повышением твердости инструмента.

Диффузионное изнашивание инструмента происходит в результате взаимного растворения металла детали и материала инструмента. На активность процесса растворения оказывает влияние высокая температура (900 - 1200ºС) контактного слоя, возникающая при высоких скоростях резания. Это приводит к изменению химического состава и физико-химических свойств поверхностных слоев инструмента, снижает его износостойкость. Поэтому диффузионное изнашивание можно рассматривать как разновидность химического изнашивания.

Чем выше механические свойства обрабатываемого материала и содержание в нем углерода, хрома, вольфрама, титана, молибдена, тем интенсивнее изнашивание инструмента. Наибольшее влияние на интенсивность изнашивания оказывает скорость резания, меньшее – подача и глубина резания.

Как правило, инструменты изнашиваются по передней и задней поверхности.

Стойкость инструмента характеризуется его способностью без переточки возможно длительное время обрабатывать заготовки в соответствии с техническими требованиями. Стойкость определяется временем непосредственной работы (исключая время перерывов) инструмента от переточки до переточки на заданном режиме резания до наступления принятого критерия затупления. Это время называют периодом стойкости или стойкостью инструмента, его обозначают буквой Т и измеряют в минутах.

10. Влияние смазочно-охлаждающей жидкости на процесс резания

Смазочно-охлаждающие жидкости (СОЖ) благоприятно воздействуют на процесс резания металлов, значительно уменьшают износ режущего инструмента, повышают качество обработанной поверхности и снижают затраты энергии, а также препятствуют образованию нароста у режущей кромки инструмента и способствуют удалению стружки и абразивных частиц из зоны резания.

При обработке чугуна и других хрупких материалов СОЖ не применяют, так как эффект от их действия незначителен. При работе твердосплавным инструментом на высоких скоростях необходимо подавать обильную и непрерывную струю жидкости, так как при прерывистом охлаждении могут образоваться трещины в режущих пластинках из твердого сплава.

Наиболее эффективны СОЖ при резании вязких, пластичных и сильно упрочняющихся при деформации металлов. При этом с увеличением толщины среза и скорости резания положительный эффект на стружкообразование от действия СОЖ уменьшается.

СОЖ должны обладать высокими охлаждающими, смазывающими, антикоррозионными свойствами и быть безвредными для работающего. Все применяемые жидкости можно разбить на две основные группы: охлаждающие и смазочные. К первой группе относят водные растворы и эмульсии, обладающие большой теплоемкостью и теплопроводностью. Ко второй группе относят СОЖ, обладающие высокой маслянистостью: минеральные масла, керосин, растворы в масле или керосине поверхностно-активных веществ. Применяют также осерненные масла, так называемые сульфофрезолы, содержащие в качестве активированной добавки серу.

11. Жесткость и вибрации системы станок – приспособление – инструмент – деталь

Возникающие при резании металла нагрузки воспринимаются инструментом и приспособлением для его крепления, а также деталью и приспособлением для ее установки и крепления. Возникающие нагрузки передаются через приспособления на узлы и механизмы станка. Образуется замкнутая технологическая система: станок – приспособление – инструмент – деталь.

В процессе обработки сила резания не остается постоянной из-за изменения сечений срезаемой стружки, припуска на обработку, неравномерности механических свойств материала и распределения силы резания. Изменение силы резания вызывает затупление и износ режущего инструмента, наростообразование и ряд других факторов, влияющих на процесс резания. Под действием изменяющихся сил резания элементы системы станок – приспособление – инструмент – деталь деформируются, изменяя тем самым условия резания, трения и работы привода станка. Характер изменения условий обработки зависит от жесткости указанной системы, то есть способности препятствовать перемещению ее элементов при воздействии на них нагрузок. Жесткость является одним из основных критериев работоспособности станка и его точности работы под нагрузкой.

Характер изменения колебаний во времени называют вибрациями. Колебания при резании разделяют на вынужденные, когда причиной колебаний являются периодически действующие возмущающие силы, и автоколебания, которые не зависят от действия периодически возмущающих сил. Источниками возмущающих сил вынужденных колебаний являются неуравновешенные части станка (шкивы, зубчатые колеса, валы); дефекты в передаточных звеньях; неуравновешенность обрабатываемой заготовки; неравномерный припуск на обработку и другие факторы.

Основными источниками возникновения автоколебаний являются изменение сил резания из-за неоднородности механических свойств обрабатываемого материала; появление переменной силы резания за счет срыва нароста; изменение сил трения на поверхностях инструмента вследствие изменения скорости резания в процессе обработки; следы вибраций от предыдущего рабочего хода, вызывающие изменение сил резания и упругие деформации обрабатываемой детали и резца и др. На интенсивность автоколебаний оказывают влияние физико-механические свойства обрабатываемого материала, параметры режима резания, геометрические параметры инструмента, жесткость отдельных элементов и всей системы станок – приспособление – инструмент – деталь, зазоры в отдельных звеньях этой системы.

Зная причины возникновения вибраций, можно найти способы их уменьшения. Однако эти пути не всегда являются рациональными. Например, увеличение главного угла в плане, хотя и уменьшает вибрации, но вместе с тем увеличивает интенсивность изнашивания режущего инструмента и т.д. Поэтому необходимо применять такие способы уменьшения вибраций, которые не снижали бы производительности и качества обработки.

12. Шероховатость. Точность обработки

На поверхностях деталей после обработки режущим инструментом на металлорежущих станках всегда остаются неровности. Совокупность микронеровностей, образующихся на поверхности детали, называют шероховатостью поверхности. Шероховатость поверхности оказывает непосредственное влияние на качество неподвижных и подвижных соединений в машинах. Например, детали с грубой поверхностью не обеспечивают в неподвижных соединениях требуемой точности и качества сборки, а в подвижных соединениях быстро изнашиваются и не выдерживают первоначальных зазоров.

На поверхности, обработанной токарным резцом, образуются микронеровности в виде винтовых выступов и винтовых канавок. Микронеровности, расположенные в направлении подачи, образуют поперечную шероховатость, а микронеровности, расположенные в направлении скорости резания, - продольную шероховатость.

Высота и характер микронеровностей зависят от обрабатываемого материала, режимов резания, геометрии режущих кромок инструмента и др. Микронеровности на поверхности деталей в большинстве случаев являются следами режущих кромок инструмента, расположение которых зависит от подачи. Изменяя геометрические параметры режущего инструмента и режимы резания, можно существенно менять характеристики шероховатости поверхности при обработке одинаковых по физико-механическим свойствам материалов.

Шероховатость обработанной поверхности повышается, когда обработку ведут на скоростях резания, способствующих наростообразованию. При обработке на высоких скоростях резания шероховатость обработанной поверхности снижается. По мере увеличения скорости резания глубина наклепа возрастает.

С увеличением скорости резания и уменьшением шероховатости до оптимальной износостойкость и коррозионная стойкость увеличиваются. Усталостная прочность повышается с увеличением степени и глубины наклепа, а также с повышением остаточных напряжений сжатия.

При увеличении подачи шероховатость обработанной поверхности повышается, глубина наклепа возрастает. Увеличение подачи способствует также увеличению остаточных напряжений и уменьшению износостойкости и коррозионной стойкости. Усталостная прочность в этом случае повышается.

Шероховатость обработанной поверхности возрастает по мере затупления инструмента. Применение тщательно доведенного инструмента способствует уменьшению глубины наклепа. Износостойкость и усталостная прочность изменяются до установленных оптимальных значений шероховатости и наклепа. Увеличение радиуса закругления режущей кромки способствует увеличению глубины наклепа и остаточных напряжений. С увеличением глубины наклепа и остаточных напряжений усталостная прочность повышается.

Явление слипаемости материала заготовки с передней поверхностью инструмента приводит к увеличению высоты микронеровностей, и наоборот, при использовании твердосплавных и керамических резцов шероховатость снижается.

В производственных условиях шероховатость обработанных поверхностей оценивают методом сравнения с образцом. Для этого обработанную деталь аттестуют по качеству поверхности в лабораторных условиях, а затем она служит эталоном при контроле качества обработки аналогичных деталей.