Смекни!
smekni.com

Туннельная печь обжига кирпича ОАО Ивановский завод керамических изделий (стр. 2 из 15)

Одним из основных требований, предъявляемых к сушилкам, является равномерность сушки изделий по всему объему сушильного пространства. Степень неравномерности высушенных изделий, расположенных в различных местах сушильной камеры (камерные сушилки) или вагонетки (туннельные сушилки), и определяется коэффициентом неравномерности сушки

, который выражает отношение конечных влажностей двух (или нескольких) высушенных изделий, расположенных в различных местах сушилки или вагонетки: изделий с наибольшей конечной влажностью
к изделиям с наименьшей влажностью
; при этом начальная влажность этих изделий принимается одинаковой

. (1.1)

Обычно

и с увеличением неравномерности сушки возрастает; при теоретически равномерной сушке
.

Коэффициент неравномерности сушки является важной характеристикой сушилок, так как служит мерилом совершенства их с точки зрения движения и распределения газовых потоков, влияет на длительность сушки и характеризует однородность (по влагосодержанию) изделий.

На ООИ «Взаимопомощь» для сушки красного кирпича применяют камерные сушилки системы Росстромпроекта. Блок состоит из 30 камер с размерами: длина 17,8 м, ширина 1,4 м, высота 3,0 м. У пода камеры расположены каналы, подающие и отводящие газы. Сушильный агент поступает в два распределительных приточных канала 1 и оттуда фонтанирует в сушильную камеру через отверстия в плитах перекрывающих эти каналы. Отработанные (насыщенные влагой) газы удаляются из сушилки отводящим каналом 2 через отверстия, расположенные в своде этого канала.

Сушилка работает с принудительной подачей воздуха от вентилятора, создается зональная циркуляция воздуха по вертикали и температура между верхом и низом выравнивается, что приводит к равномерной сушке изделий по высоте камеры.

Сырец укладывается на рамы, которые устанавливают на специальные выступы в стенах камеры. В одной камере размещают 50 вагонеток, одна вагонетка состоит из 10 полок, на каждой полке 12 кирпичей.


2. ОБЖИГ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

2.1 Процессы, происходящие при обжиге изделий из легкоплавких глин

На поведение керамических изделий в процессе обжига влияют термические свойства глин, из которых они изготовлены.

Главнейшими термическими свойствами легкоплавких глин являются огнеупорность, огневая усадка, интервал спекания, интервал обжига, теплоемкость, теплопроводность, температуропроводность и прочность в горячем состоянии.

При обжиге легкоплавких глин имеют место физико-химические процессы, связанные с фазовыми превращениями, разложением, частичным плавлением, кристаллизацией новообразований и реакциями в твердой фазе.

Указанные процессы происходят в глинообразующих минералах, примесях и добавках и по времени могут накладываться друг на друга.

Общая картина изменений, происходящих в глинистой легкоплавкой массе при ее обжиге, схематически представлена в таблице 1.1 [4]. При быстром нагреве температурные интервалы, указанные в таблице 1.1, сдвигаются в область более высоких температур.

При нагревании изделия значительной толщины в нем возникают существенные температурные перепады, и отдельные слои изделия находятся под воздействием неодинаковых температур.

Таблица 2.1 Процессы, происходящие в отдельных температурных интервалах обжига

Температурные интервалы в 0С Превалирующие процессы в данном температурном интервале
До 150 Удаление физически связанной адсорбированной влаги и межплоскостной влаги монтмориллонитовых минералов
131-224 Разложение гидрогематита с выделением воды цеолитного типа
140-180 Интенсивное вскипание остаточной влаги в сырце при быстром его нагреве. Понижение прочности сырца с возможностью возникновения трещин, сопровождающихся «хлопками» в печах
200-400 Выгорание гумусовых веществ
400-550 Пирогенетическое разложение органических примесей и добавок с выделением горючих веществ
450-550 Наиболее интенсивное удаление конституционной воды монтмориллонитовых минералов
500-700 Начало образования эвтектических силикатных расплавов, сопровождающееся уплотнением и упрочнением черепка
570-750 Распад магниевых карбонатов с выделением углекислого газа
573 Переход b-кварца в a-кварц с увеличением в объеме на 0,82%
600-1200 Реакция между известью и каолинитом с образованием CaO×Al2O3 и 2CaO×SiO2
700-800 Реакция в твердой фазе между SiO2, Al2O3 и СаСО3
700-900 Выгорание коксового остатка органических примесей и добавок
800-860 Разрушение кристаллической решетки монтмориллонита
800-1000 Интенсивное разложение кальциевых карбонатов с выделением углекислого газа. При большом содержании карбонатных примесей – заметное повышение пористости черепка с возрастанием температуры обжига
800-900 Кристаллизация гематита Fe2O3
800-1050 Интенсивная усадка и уплотнение черепка за счет накопления жидкой фазы эвтектических силикатных расплавов
950-1000 Кристаллизация шпинели MgO×Al2O3
950-1050 Начало интенсивного образования муллита
950-1100 Расплавление пылевидных зерен полевого шпата
1000 Переход a-кварца в a-кристобалит с увеличением в объеме на 15,4%
1050-850 Охлаждение Увеличение вязкости при сохранении пиропластичного состояния черепка
850-750 Переход из пиропластичного состояния в твердое (хрупкое). Резкие структурные изменения. Возникновение максимальных напряжений с возможностью образования трещин
675 Переход b-2СаО×SiO2 с увеличением в объеме на 10%
573 Переход a-кварца в b-кварц с увеличением в объеме на 0,82%
270-180 Переход a-кристобалита в b-кристобалит с уменьшением в объеме на 2,8%

Вследствие этого процессы, указанные в табл. 1.1, протекают в обжигаемом изделии не последовательно друг за другом, а одновременно, накладываясь во времени. В восстановительной среде температуры плавления, начала и конца спекания существенно понижаются, иногда на 100-1500С; особенно это характерно для глин с большим содержанием железистых окислов. По исследованиям М.Г. Лундиной, трещиностойкость изделий из легкоплавких глин в процессе обжига понижается с увеличением, содержания в глине монтмориллонитовых минералов, глинозема, частиц величиной менее 1 мк (особенно при их количестве более 35-40%) и при повышении числа пластичности более 20.

Коренные изменения в минеральном фазовом составе черепка отмечались лишь при достижении температур 800-9000С. Трещинообразование при нагревании наступает лишь в период интенсивной усадки. Обжиг абсолютно сухого сырца до температуры 8000С может производиться с интенсивностью до 300 град/ч. Скоростной обжиг возможен при влажности сырца не более 5%. При этом необходимо иметь в виду, что пересушенный сырец является хрупким и его механические повреждения (видимые и невидимые) возможны до обжига при его транспортировании и садке в печь.

К.А. Нохратян и З.А. Смолякова [4], исследуя процесс охлаждения кирпича, установили наличие “опасного” температурного интервала в области 500-6000С, вызванного полиморфным превращением кварца. При быстром охлаждении кирпича в указанном интервале температур происходит изменение структуры, сопровождающееся общим разрыхлением черепка, повышением его водопоглащения и снижением прочностных показателей. В связи с этим указанные авторы рекомендуют вести процесс охлаждения по трехступенчатому режиму:

1) форсированное охлаждение от конечной температуры обжига до 6000С;

2) медленное охлаждение в интервале температур 500-6000С;

3) форсированное охлаждение до температуры выгрузки. Общая длительность может быть при этом значительно снижена по сравнению с одноступенчатым режимом при существенном улучшении качества кирпича.


2.2 Описание конструкции и работы туннельной печи

Для обжига керамического кирпича на ООИ «Взаимопомощь» установлены 2 туннельные печи. Туннельная печь для обжига керамических изделий имеет вагонеточный состав, передвигающийся вдоль туннеля с помощью толкателя. Внутри туннеля проложен рельсовый путь. Каждая вагонетка, пройдя всю длину туннеля, выдается из печи с другого конца при очередном проталкивании. Таким образом, создается непрерывное перемещение вагонеток в печи, постепенный подогрев, обжиг и охлаждение изделий, находящихся на поду вагонетки. Туннельная печь длиной 62 м и шириной 2 м имеет 3 зоны.

Форкамера служит для уменьшения газообмена с окружающей средой при загрузке вагонеток в печь.

Основное назначение зоны подогрева – окончательное удаление влаги из сырца и равномерный прогрев садки до температуры 6000С. Подогрев и сушка производятся отходящими из зоны обжига продуктами горения.

В зоне обжига сжигается топливо в специальных горелочных устройствах. Сырец нагревается до температуры 9800С, при этом завершаются все процессы, связанные с формированием черепка. Воздух, поступающий для сжигания топлива, предварительно подогревается в зоне охлаждения. Горение топлива происходит в разрывах между садками кирпича на вагонетках. С каждой стороны печи установлено по семь горелок, топливо – природный газ.