Смекни!
smekni.com

Расчет и подбор теплоутилизационного контура (стр. 3 из 5)

Число труб в камере радиации: nр = 54/3,14*0,152*5,2 = 21,76.

Теплонапряженность радиантных труб: qр = 2387431/54 = 44211,69 Вт/м2.

Число конвективных труб: nк = 54/3,14*0,114*5,2 = 29,01.

Располагаем трубы в шахматном порядке по 3 в одном горизонтальном ряду, шаг между трубами S = 1,7*dк = 1,7*0,114 = 0,19м.


Рис. 3. Принципиальная схема рассматриваемой технологической печи.

13) Средняя разность температур:

Dtср = [(tn-tk)-(tух-t1)]/ln[(tn-tk)/(tух-t1)]

Dtср = [(916,4-260,4)-(450-151)]/ln[(916,4-260,4)/(450-151)] = 454.20C

14) Коэффициент теплопередачи:

К = Qконв/Dtср*F = 795810/454.2*54 = 32,46 Вт/м2*К.

15) Теплонапряженность поверхности конвективных труб:

qk= Qконв /F = 795810/54 = 14737.2 Вт/м2.

Гидравлический расчет змеевика печи

Для обеспечения нормальной работы трубчатой печи необходимо обосновано выбрать скорость движения потока сырья через змеевик. При увеличении скорости движения сырья в трубчатой печи повышается коэффициент теплоотдачи от стенок труб к нагреваемому сырью, что способствует снижению температуры стенок, а следовательно, уменьшает возможность отложения кокса в трубах. В результате уменьшается вероятность прогара труб печи и оказывается возможным повысить тепло напряженность поверхности нагрева. Кроме того, при повышении скорости движения потока уменьшается отложение на внутренней поверхности трубы загрязнении из взвешенных механических частиц, содержащихся в сырье.

Применение более высоких скоростей движения потока сырья позволяет также уменьшить диаметр труб или обеспечить более высокую производительность печи, уменьшить число параллельных потоков.

Однако увеличение скорости приводит к росту гидравлического сопротивления потоку сырья, в связи с чем увеличиваются затраты энергии на привод загрузочного насоса, так как потеря напора, а следовательно, и расход энергии возрастают примерно пропорционально квадрату (точнее, степени 1,7-1,8) скорости движения.

Находим потерю давления водяного пара в трубах камеры конвекции.

Средняя скорость водяного пара:

[м/с],

где

- плотность водяного пара при средней температуре и давлении в камере конвекции,
кг/м3; dк – внутренней диаметр конвекционных труб, м; n – число потоков.

Значение критерия Рейнольдса:

, где
- кинематическая вязкость водяного пара.

Общая длина труб на прямом участке:

[м].

Коэффициент гидравлического трения:

.

Потери давления на трение:

.

Потери давления на местные сопротивления:

,

где

Общая потеря давления:

[кПа].

Расчет потери давления водяного пара в камере радиации

Средняя скорость водяного пара в трубах радиационной камеры составляет:

м/с,

где

- плотность водяного пара при средней температуре и давлении в камере конвекции,
кг/м3; dр – внутренней диаметр конвекционных труб, м; n – число потоков.

Значение критерия Рейнольдса:

, где
- кинематическая вязкость водяного пара.

Общая длина труб на прямом участке:

[м].

Коэффициент гидравлического трения:

.

Потери давления на трение:

.

Потери давления на местные сопротивления:

.

где

Общая потеря давления в камере радиации:

[кПа].

Общие потери давления в печи:

4.4 Тепловой баланс котла-утилизатора (анализ процесса парообразования)

Рис. 4 Эскиз КУ.

Исходные данные для расчета котла-утилизатора

1. Теплоноситель – дымовые газы после печи

Расход топлива В=0,0925 кг/с,

Температура входа

выхода

,

Энтальпия входа

выхода

,

Коэффициент полезного действия

,

2. Нагреваемая среда – питательная вода

Температура питательной воды входа

выхода

,

Энтальпия питательной воды входе при

при

Энтальпия водяного пара

.

Рис 5. График изменения температуры по площади аппарата.

Составляем уравнение теплового баланса:

Исходя из того, что КПД котла-утилизатора 0,95 получим, что:

.

Определяем расход питательной воды:

Доля водяного пара составляет:

.

Анализ процесса по стадиям.

1)Ищем температуру tх. На стадии нагревания:

По графику определяем температуру для данной энтальпии, которая составляет 246,38 0С.

Таким образом

2)Находим теплоту, пошедшую на испарение питательной воды:

Находим теплоту, пошедшую на нагрев питательной воды:

Определяем общее количество теплоты по питательной воде:

Таким образом, доля теплоты, переданная на стадии нагревания составляет:

;

Определяем требуемую площадь поверхности теплообмена:

Здесь

. Определяем среднюю температуру при нагреве питательной воды: