Смекни!
smekni.com

Составление теоретической конструкции балки (стр. 3 из 4)

б) Моменты инерции относительно главных центральных осей x, y.

Предварительно вычисляем осевые моменты инерции отдельных частей относительно собственных центральных осей ξiηi

I

= 8t·(4t)3/12 = 42,67t4,

I

= 2·t·(8t)3/12 = 85,33t4,

I

= 4t·(8t)3/12 = 170,67t4,

I

= 2·8t·t3/12 = 1,33t4.

Остальные вычисления представим в табличной форме.

п/п

xi

yi

Ai

Ix=Σ(I

+
Ai)

Iу=Σ(I

+
Ai)

I

Ai

I

I

Ai

I

1

0

2t

32t2

42,67t4

128t4

213,33t4

1,33t4

0

1,33t4

2

1,5t

-4t

16t2

85,33t4

256t4

298,67t4

170,67t4

36t4

206,67t4

Σ

48t2

128t4

384t4

512t4

172t4

36t4

208t4


в) Главные радиусы инерции

ix2 = Ix/A = 512t4/(48t2) = 10,67t2;

iy2 = Iy/A = 208t4/(48t2) = 4,33t2.

Построение ядра сечения. Для фигуры с прямолинейными сторонами ядро сечения представляет собой выпуклый многоугольник, координаты вершин которого определяются формулами:

xяi= – iy2/ai , yяi= – ix2/bi .

Здесь ai и bi – отрезки, отсекаемые нейтральной линией на осях координат, при ее обкатывании вокруг контура сечения. Выполняя необходимые вычисления в табличной форме, получим ядро сечения.

Положение нейтральной линии

Отрезки,

отсекаемые на осях

Координаты вершин

ядра сечения

ai

bi

xяi

yяi

1–1

4t

0

–2,668t

2–2 (2'–2')

–4t (4t)

1,083t (–1,083t)

0

3–3 (3'–3')

–4t (4t)

–16t

1,083t (–1,083t)

0,667t

4–4

–8t

0

1,334t

4.2 Определение размеров сечения

Отрезки, отсекаемые нейтральной линией на осях координат

ао= – iy2/xf = –4,33t 2/(4t) = –1,083t;

bо= – ix2/yf = –10,67t 2/0 = ∞.

Проводим нейтральную линию nn и устанавливаем опасные точки. Это будут точки 1 и 6 как наиболее удаленные от нейтральной оси.

Из условия прочности на растяжение

σmax =

,

σmax =

,

откуда

мм.

Из условия прочности на сжатие

σmin =

,

σmin =

,

откуда

Следовательно, t = max

= tp = 27,3 мм. Принимаем по ГОСТ 6636
=28 мм. Для ближайшего меньшего размера (
=26 мм) будет перенапряжение 15,7%, что недопустимо.

4.3 Построение эпюры нормальных напряжений. Исходя из принятых размеров сечения, находим напряжения в опасных точках

МПа;

МПа


и строим эпюру σ.


5 Пространственные рамы

5.1 Устанавливаем опасное сечение для каждого из стержней

AB – сечение А, где Mx = 3qa2, My = qa2, Mz = 2qa2;

Qx = 0, Qy = 2qa, NA = qa.

AB – сечение B, где Mx = qa2, My = qa2, Mz = 2qa2;

Qy =2qa, NA = qa.

BC – сечение B, где Mx = qa2, My = 2qa2, Mz = 0,5qa2;

Qy =qa, N = 2qa.

BC – сечение C, где Mx = 0, My = 2qa2, Mz = 0,5qa2;

Qy =qa, N = 2qa.

CD – сечение C, где Mx = 0,5qa2, My = 2qa2;

Qx = 2qa , Qy = qa.

CD – сечение D, где Mx = 0, My = 0;

Qx = 2qa , Qy = 0.

5.2 Подбор сечений стержней

Сечение А Стержень АВ

Он испытывает изгиб в двух плоскостях, кручение, сдвиг и сжатие.Так как Mx > My, то рациональным будет такое расположение сечения, при котором Wx > Wy, т.е. длинная сторона прямоугольника должна быть параллельна оси y. Для установления опасной точки необходимо вычислит эквивалентные напряжения в трех точках контура сечения. Из них опасной будет та точка, в которой σэкв является наибольшим. При подборе сечений будем пренебрегать в первом приближении продольными и поперечными силами.

Точка 1. В этой точке возникает линейное напряженное состояние, поэтому

.

Так как h/b=1,5, то h = 1,5b;

,
.

Следовательно,

.

Точка 2. В этой точке возникает плоское напряженное состояние, поэтому

.

Так как

,

,

Следовательно,

.

Точка 3. В этой точке возникает плоское напряженное состояние, поэтому сог-ласно III гипотезе прочности

.

Так как

,

,

Следовательно,

.

Так как

, то опасной является точка 2.

Записываем условие прочности для точки 2

.

Отсюда

мм.

Принимаем по ГОСТ 6636 bo =160 мм. Следовательно, стержень АВ должен иметь сечение 16x24 см.

Так как подбор сечения выполнен без учета продольной и поперечной сил, то необходимо проверить прочность стержня, принимая во внимание все внутренние силовые факторы, возникающие в опасном сечении. Рассмотрим опасную точку 2 и вычислим в ней нормальные, касательные и эквивалентные напряжения.

Нормальные напряжения:

- от изгиба


МПа;