Рисунок 1.6 - Зависимость коэффициента ш от скорости циркуляции и давления
1.6.2 Определение потери давления на местных сопротивлениях
Потеря напора из-за местных сопротивлений при течении однофазной среды определяется как
Для участка с двухфазной средой
1.6.3 Определение нивелирной составляющей потери давления
Нивелирная составляющая потери напора при течении: однофазной среды
для двухфазной среды
где
здесь
1.6.4 Определение потери давления на ускорение среды
Потеря напора на ускорение среды учитывается только на участках поверхностного и развитого кипения теплоносителя:
где
1.6.5 Давление теплоносителя
Давление теплоносителя в расчетных сечениях по высоте канала
1.7 Расчет коэффициентов теплоотдачи, температуры наружной поверхности оболочки твэла и запаса до кризиса теплообмена по высоте канала
1.7.1 Температура наружной поверхности оболочки твэла
Температура наружной поверхности оболочки твэла по высоте канала со средней тепловой нагрузкой
де
Расчетные соотношения для определения коэффициента теплоотдачи зависят от режима течения и структуры потока. Применительно к рабочим каналам реактора РБМК по их высоте выделяют три участка:
конвективного теплообмена от z = 0 до z = zHK
поверхностного кипения от z = zHK до z = zP
развитого кипения от z = zP до z = zBЫX
1.7.2 Участок конвективного теплообмена
На участке конвективного теплообмена коэффициент теплоотдачи рассчитывают по формуле (1.51):
Где
1.7.3 Участок поверхностного кипения
На участке поверхностного кипения коэффициент теплоотдачи в каждом расчетном сечении может быть определен в соответствии с формулой, рекомендованной Л.С. Стерманом [3; 4]:
здесь
Эта формула применима при соблюдении условия
В противном случав коэффициент теплоотдачи рассчитывается по формуле (1.51).
1.7.4 Коэффициент теплоотдачи на участке развитого кипения
На участке развитого кипения коэффициент теплоотдачи в каждом рассматриваемом сечении рассчитывается по соотношениям, рекомендованным Н.Г. Стюшиным [3]:
где St - число Стантона, подсчитываемое как
здесь р - давление теплоносителя, MПa; у,р" - соответственно коэффициент поверхностного натяжения, Н/м; и плотность пара на линии насыщения, кг/м3;
Все теплофизические параметры, входящие в эти формулы, определяются по температуре насыщения.
1.7.5 Коэффициент запаса до кризиса теплообмена
Коэффициент запаса до кризиса теплообмена определяют соотношением:
где qS(z) - поверхностная тепловая нагрузка, рассчитывается по формуле (1.18), кВт/м2;qKP(z) - критический тепловой поток, который согласно рекомендациям В.Н. Смолина и В.К. Полякова [4] можно рассчитать по формуле
Здесь р - давление теплоносителя, МПа; х - относительная энтальпия.
1.8 Расчет температур внутренней поверхности оболочки твэла, наружной поверхности и центральной части топливного сердечника
Температуры внутренней поверхности оболочки твэла, наружной поверхности и центральной части топливного сердечника существенным образом зависят от теплопроводности соответственно циркония, гелия и двуокиси урана, которые в свою очередь являются функциями температуры. В силу этого расчет указанных температур ведется итерационным способом. Расчет считается законченным, если расхождение в значениях температур, полученных в двух последних итерационных циклах, не превышает наперед заданной величины, например
1.8.1 Температура внутренней поверхности оболочки твела
Температура внутренней поверхности оболочки твела [1]:
где
Остальные величины, входящие в формулу (1.58). Подсчитаны ранее или определены в исходных данных.
1.8.2 Температура наружной поверхности топливного сердечника
Температура наружной поверхности топливного сердечника
где
1.8.3 Температура в центре топливного сердечника
Температура в центре топливного сердечника [1]
где
1.9 Расчет температурного режима графитовой кладки
Температура графита по высоте канала (максимальной и средней нагрузки) не должна превышать 700 °С [б] и определяется как
где