Формование на станке СМЖ-194 осуществляют как в ручном, так и в автоматическом режиме.
Для формования труб диаметром 80...1200 мм применяют станок СМЖ-329. Конструкция станка принципиально не отличается от станка СМЖ-194. Особенность состоит лишь в том, что поворотный стол за счет выноса оси формования расположен перед станком.
Для формования труб диаметром 1400...2400 мм предназначен станок СМЖ -419. Станок имеет небольшую высоту за счет использования катков, служащих направляющими для перемещения механизма вращения, расположенных в два яруса в поперечной раме. Такое конструктивное решение облегчает обслуживание станка, уменьшает его металлоемкость.
Для формования колец колодцев диаметром 700...1500 мм с высотой 890 мм используют станок СМЖ-512. .
Использование станков радиального прессования значительно расширило номенклатуру выпускаемых изделий. На станке СМЖ-329 выпускают раструбные и фальцевые трубы диаметром 500...1200 мм, кольца - 700... 1000 мм.
Особенности технологии изготовления радиально-прессованных труб определяют режимы тепловлажностной обработки. В тоннельных камерах непрерывного действия трубы на тележках перемещаются по рельсовым путям.
Рис. 4. Технологическая линия по производству труб методом радиального прессования
1 - приемный бункер для бетона; 2 - пульт управления; З, 4 - горизонтальные и наклонные ленточные конвейеры; 5 - автоматический захват для транспортирования форм и распалубки; 6 - поддон-тележка для накопления труб; 7 - камера тепловой обработки; 8 - манипулятор для транспортирования поддонов-тележек в камеру тепловой обработки; 9 - кантователь для перевода труб в горизонтальное положение; 10 - автоматический захват для переноса труб с кантователя на пост выдержки и готовой продукции; 11, 12 - стенды для испытания труб; 13 - устройство для перемещения поддонов-тележек; 14 - привод возврата поддонов-тележек из зоны кантования в зону распалубки.
Для обеспечения необходимого режима тепловой обработки камера разделена на 4 зоны: предварительной выдержки, подъема температуры, изотермической выдержки, охлаждения.
Изготовление труб диаметром 300...600 мм может производиться на опытно-промышленной линии, на которой организовано их производство способом радиального прессования (рис. 4).
В качестве оборудования используют механизмы для подачи бетонной смеси, транспортеры поддонов-тележек и форм труб, стенды для испытания труб и пр.
Толщина защитного слоя труб из бетона не менее 200 может быть уменьшена на 5 мм, но должна быть не менее 20 мм.
В элементах, имеющих подрезку у опор, толщина защитного слоя нижней продольной арматуры на длине подрезки должна быть не больше толщины защитного слоя этой арматуры в пролете элемента.
2.6 Транспортирование бетонной смеси
Перемещение бетонной смеси и растворов от бетоносмесительного цеха к месту их потребления является одной из важнейших задач современной организации производства сборных ж/б конструкций. Выбор способа транспортирования бетонной смеси может оказать существенное влияние на величины ее технологических показателей: состава смеси, принимаемой крупности заполнителя, удобоукладываемости и др.
На заводах и полигонах сборного ж/б наиболее распространены следующие способы транспортирования бетонных смесей: мостовыми кранами или автокранами в бадьях; самоходными бетоноразвозчиками, перемещающимися по рельсовым путям; ленточными транспортерами; пневматическими устройствами. Основными факторами для вида транспортирования бетонной смеси является интенсивность ее подачи, дальность транспортирования и высота выгрузки смеси.
Наиболее распространенными транспортными средствами для внутрицехового перемещения бетонной смеси являются бетоноразвозчики различной конструкции, которые обычно перемещаются по бетоновозной эстакаде для выдачи смеси в бункера технологических линий или непосредственно в бункера бетоноукладчиков.
Для перемещения жестких и малоподвижных смесей широко применяют ленточные транспортеры, оборудованные самоходными сбрасывающими тележками. Они дают возможность в 2-3 раза увеличить интенсивность подачи бетонной смеси по сравнению с другими видами транспорта, что в некоторых случаях имеет решающее значение (например, для подачи смеси в кассетные формы).
Транспортирование бетонной смеси пневмотранспортной установкой применяют при формовании панелей в кассетных формах, в производстве опор для линий электропередач и др.
Потери бетонной смеси при ее подаче пневмотранспортом, ленточными конвейерами или бадьями, а также при формовании изделий не должны превышать 1,5% от общего объема смеси.
3. Расчетная часть
3.1 Технологические расчеты бетоносмесительного цеха
3.1.1 Расчет состава бетона
Проектирование состава бетона для подстропильных и подкрановых балок производим из условия получения после тепловой обработки 70, 80 или 100%-ной проектной прочности бетона. За проектную прочность принимаем прочность бетона в возрасте 28 суток.
Балки будем производить из тяжелого бетона с маркой по прочности М 300.
В качестве материалов для бетона балок принимаем: ПЦ с прочностью М 400 и плотностью ρц=1,3 кг/м3, песок средней крупности с водопотребностью 7% и плотностью ρп=2,63 кг/м3, гранитный щебень с крупностью 40 мм и плотностью ρщ=2,6 кг/м3 и γщ=1,48 кг/л.
1. Определяем В/Ц в зависимости от требуемой прочности, срока и условий твердения бетона. Для обычного бетона В/Ц>0,4
В/Ц=
,где А – эмпирический коэффициент, учитывающий влияние заполнителей и других факторов на прочность бетона; Rб – прочность бетона в возрасте 28 суток; Rц – активность цемента.
В/Ц=
=0,542. Определяем расход воды в зависимости от требуемой подвижности бетонной смеси по графикам (рис 4). Необходимо также учесть водопоглащение крупного заполнителя, так как оно более 0,5% по массе (7%). Так, ориентировочный расход воды составляет 178 л/м3.
Наименование цеха | Количество | Годовой фонд времени (ч) | ||
Рабочих дней в году | Смен в сутки | Часов в смене | ||
Бетоносмесительный | 253 | 2 | 8 | 4048 |
1. В год необходимо:
1) Бетонной смеси=2375∙40000=95000000 кг=95000 т
2) Портландцемента=330∙40000=13200000 кг=13200 т
3) Воды=178∙40000=7120000 кг=7120 т
4) Щебня=1273∙40000=50920000 кг=50920 т
5) Песка=594∙40000=23760000 кг=23760 т
Учитывая технологические потери, Бет.см=95000∙1,5=142500 т
2. Расчет на сутки:
1) Бет.см=142500:253=563 т
2) ПЦ=13200:253=52 т
3) В=7120:253=28 т
4) Щ=50920:253=201 т
5) П=23760:253=94 т
3. На одну смену приходится:
1) Бет.см=563:2=281,5 т
2) ПЦ=52:2=26 т
3) В=28:2=14 т
4) Щ=201:2=100,5 т
5) П=94:2=47 т
4. Расчет на час:
1) Бет.см=281,5:8=35,2 т
2) ПЦ=26:8=3,3 т
3) В=14:8=1,8 т
4) Щ=100,5:8=12,6 т
5) П=47:8=5,9 т
Все полученные данные сводим в таблицу 4
Таблица 4
Сырье и полуфабрикаты | Единица измерения | Потребность | |||
час | смена | сутки | год | ||
Бетонная смесь | т | 35,2 | 281,5 | 563 | 142500 |
Цемент | т | 3,3 | 26 | 52 | 13200 |
Вода | т | 1,8 | 14 | 28 | 7120 |
Щебень | т | 12,6 | 100,5 | 201 | 50920 |
песок | т | 5,9 | 47 | 94 | 23760 |
3.1.3 Расчет и проектирование складов заполнителей
Вместимость склада заполнителей определяем по формуле:
Vз=Qсут∙Тхр∙1,2∙1,02,
где Qсут – суточный расход материалов (т); Тхр – нормативный запас хранения материалов (сут), учитывая, что заполнитель доставляется автотранспортом, выбираем запас 6 суток; 1,2 – коэффициент разрыхленя; 1,02 –коэффициент разрыхления, учитывающий потери при транспортировке.
Для каждого вида заполнителя вместимость склада рассчитываем отдельно.
Vз(Щ)=201∙6∙1,2∙1,02=1476,1 т
Vз(П)=94∙6∙1,2∙1,02=690,3 т
Тогда общая вместимость склада: Vз(Щ)+Vз(П)=1476,1+690,3=2166,4 т
Так как производительность данного бетоносмесительного цеха составляет 40000 т, то применяем склады силосного типа.
3.1.4 Расчет и проектирование склада цемента