Смекни!
smekni.com

Рамочный датчик угла (стр. 3 из 4)

Специфическая конфигурация магнитопровода, а также наличие воздушного зазора обусловливают наличие в датчике значительных полей рассеяния. Распределение и расчет этих полей представляет известные трудности. Асимметрия, вводимая полями рассеяния в общую картину поля датчика, вызывает появление асимметрии и нелинейности выходного напряжения датчика при повороте ротора.

Технологические погрешности. Значения допусков на отдельные детали и несовершенство технологии изготовления и сборки датчиков определяют наличие целого ряда погрешностей датчиков угла.

Необходимым условием при установке в гироскопе датчика угла является требование равномерности воздушного зазора между статором и ротором, так как неравномерный воздушный зазор приводит к искажению характеристики выходного напряжения датчика, делая ее несимметричной.

Отличие угла сдвига фазы между напряжениями выходных катушек от 180° приводит к появлению значительного остаточного напряжения, для устранения которого необходимо использовать один из выше рассмотренных методов и которое приводит к дополнительному увеличению несимметричности характеристики выходного напряжения датчиков. Большое влияние на точность датчика рамочного типа оказывает качество намотки рамки - двух встречно включенных катушек, перемещающихся в воздушном зазоре. Несимметричное выполнение этих катушек приводит к тому, что при повороте рамки изменение потокосцепления с каждой катушкой неодинаково, поэтому нелинейность и несимметричность характеристики выходного напряжения такого датчика существенно увеличиваются.

Погрешности, вызванные влиянием внешней среды. При работе датчиков угла в гироскопе на точность их работы оказывают существенное влияние температурные воздействия, а также наличие внешних электромагнитных полей.

Теплоизлучение других элементов гироскопического прибор может привести к принудительному нагреву датчика угла. В это случае решающее значение имеет правильный выбор конструкционных материалов датчика, так как различные коэффициенты линейного расширения деталей датчика могут привести к нарушению первоначально установленной величины и равномерности воздушного зазора, а следовательно, к смещению электрического нуля датчика и искажению характеристики выходного напряжения.

При изготовлении материала магнитопровода датчика из ферритов в результате нагрева происходит значительное ухудшению магнитных свойств последних, что непосредственно приводит к ухудшению параметров датчиков.

1.7 Достоинства и недостатки рамочного датчика угла

Достоинства индукционного датчика угла с подвижной катушкой. Значительно меньшая величина реактивного момента. Это объясняется тем, что рамка не имеет ферромагнитных масс и, следовательно, не создает электромагнитного момента; магнитоэлектрический момент рамочного датчика незначителен, так как токи в сигнальной катушке малы.

Значительно меньшая величина нулевого сигнала. Величина нулевого сигнала, обусловленного наличием высших и четных гармоник, в рамочных датчиках также ниже, так как магнитная цепь датчика даже при высоких индукциях в магнитопроводе остается линейной за счет большого воздушного зазора, составляющего величину порядка 2-3 мм.

Независимость выходного сигнала датчика (в сдвоенном варианте) от радиальных смещений чувствительного элемента.

Недостатком рамочного датчика является необходимость дополнительных токоподводов к подвижному узлу прибора. Следует также отметить большое потребление энергии рамочным датчиком. Это объясняется необходимостью создания в большом воздушном зазоре датчика требуемой величины индукции. Так же РДУ работает только на переменном токе и требует последующего преобразования выходного сигнала из переменного в постоянный. Выходной сигнал рамочного датчика имеет незначительную мощность, и поэтому всегда подается на промежуточный усилитель, который должен обладать большим входным сопротивлением. Это необходимо для того, чтобы свести к минимуму ток в сигнальной катушке, так как этот ток в основном обусловливает реактивный момент рамочного датчика. К недостаткам так же относится малый диапазон измеряемых углов и значительная нелинейность выходной характеристики.


2. Расчетно-конструкторская часть

Согласно техническому заданию, имеем следующие исходные данные для расчета кольцевого индукционного датчика угла:

Таблица 2-Техническое задание

Напряжение возбуждения U, f 26В, 400Гц
Число витков катушки возбуждения w
1000
Число витков сигнальной катушки w
2000
Крутизна выходной характеристики k, В/град 0,4
Габаритные размеры, мм 20х10
Потребляемая мощность, Вт 0,8
Сечение полюса, мм2 4
Рабочий зазор δ, мм 2
Толщина пакета магнитопровода, мм 2
Диаметр провода не более, мм 0,08

Методика расчета изложена в [1].

2.1 Расчет параметров катушек и воздушного зазора

Рассчитаем параметры катушки возбуждения, выбрав диаметр намоточного провода d

= 0,06 мм (по меди). С помощью чертежа определяем длину среднего витка

= 23 мм.

Величина активного сопротивления катушки возбуждения при нормальной температуре:

r

=w
r
=
(14)


ρ=17,5∙10

Ом∙м - удельное сопротивление меди при нормальной температуре.

r

=
=
142,4 Ом

Определим индуктивное сопротивление катушки возбуждения, для чего в соответствии со схемой замещения [1] (рис. 13.10, б) рассчитаем магнитную проводимость зоны зазора G3и проводимость утечки Gy.

Магнитные проводимости рассчитаем «методом определения проводимости по вероятным путям потока». Учитывая геометрию зазора и пользуясь формулами [1] (табл. 13.1), получаем

G3

G3ГЕОМ, (16)

где µ

=4π∙10
Гн/м
– магнитная проницаемость воздуха.

G3 = 4,52∙10

Гн

Проводимость утечки

Gy =4,04∙10

Гн.

Индуктивное сопротивление катушки возбуждения:

wL

= 2πfw
(G3
+ Gy) (17)

wL

=2∙3,14∙400∙1000

∙(4,52+4,04)∙10
=215 Ом.

Величина тока возбуждения, при напряжении U=26 В, равна

I =

= 112 мА.

Определим параметры сигнальной катушки. Для сигнальной катушки выбираем медный провод диаметром d

=0,03 мм. Так как диаметр провода мал, то принимаем коэффициент заполнения окна k3 = 0,3.

Число витков сигнальной катушки:

w

=
21000
(18)