Смекни!
smekni.com

Система управления биотехнологическими процессами (стр. 2 из 3)

ТЕХНИЧЕСКИЕ И ПРОГРАММНЫЕ СРЕДСТВА УПРАВЛЕНИЯ

ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ

Любые целенаправленные действия (операции) над исходным сырьем, полуфабрикатами или компонентами (ингредиентами) выпускаемой продукции, совершаемые в определенной последовательности можно рассматривать как некоторые технологии, каждая из которых обладает определенной структурой, входом и выходом.

Все входы и выходы технологий образуются в результате преобразования материальных, энергетических, финансовых и информационных потоков. Через эти потоки каждая технология связывается с другими технологиями, в том числе и с потребительским рынком, причем следует различать операционные (вход, выход) и управляющие (управление) потоки данных.

Информационные потоки отражают (моделируют) изменение (преобразование) материальных, энергетических и финансовых потоков при реализации технологий. Эти потоки обычно описывают как совокупность сигналов, т.е. физических процессов, передающих информацию. Для выделения из сигналов их информационной составляющей необходимо выполнить некоторые преобразования. Поэтому наиболее часто на практике применяются электрические сигналы, как наиболее удобные для выполнения различных преобразований.

Самым эффективным устройством для выделения информационной составляющей сигналов является компьютер. Поэтому компьютерные системы управления бурно развиваются и находят широкое применение, как в производстве, так и в бизнесе.

При автоматизации производственных процессов, бытовой аппаратуры, транспортных средств и других технических устройств, все чаще применяют универсальные микроконтроллеры, представляющие собой микро-ЭВМ, все функциональные узлы которой содержатся на одном полупроводниковом кристалле и выполненную в виде одной микросхемы.

Промышленностью освоен выпуск многих серий микроконтроллеров, различающихся набором функциональных возможностей, объемом памяти, быстродействием, энергопотреблением и стоимостью. Одним из основных параметров классификации микроконтроллеров является разрядность арифметико-логического устройства. Различают 8-, 16- и 32- разрядные микроконтроллеры.

Микроконтроллер в процессе работы обменивается данными с другими устройствами. Этот обмен осуществляется через линии связи и выполняется по определенным правилам. Совокупность используемых при указанном обмене данными линий связи и правил обмена информацией называется интерфейсом (иногда вместо термина интерфейс употребляется термин протокол).

Базовый функциональный профиль систем диспетчерского контроля и сбора данных с человеко-машинным интерфейсом (SCADA/HMI) сформировался еще во времена первых управляющих вычислительных машин, снабженных монохромными алфавитно-цифровыми дисплеями, на которых создавались «псевдографические» изображения - прообраз современной графики. Уже тогда системы обеспечивали сбор, обработку, отображение информации, ввод команд и данных оператором, архивирование и протоколирование хода технологического процесса (ТП).

С появлением в пунктах управления ТП компьютерной техники в составе управляющих вычислительных машин и распределенных систем управления (РСУ), характеризующихся наличием нескольких центров обработки данных о ходе ТП, расширяется их функциональный профиль, технические и коммуникационные возможности. В составе компьютерных операторских станций появляются цветные графические дисплеи, средства анимации изображений, голосовая сигнализация расширяются функциональные возможности операторских станций.

В начале 80-х годов 20 века ряд международных организаций по стандартизации ISO, ITU-T и некоторые другие - разработали концепцию открытых систем, реализованную в виде модели OSI (Open System Interconnection), т.е. модели взаимодействия открытых систем, определяющую различные уровни взаимодействия систем, дающую им стандартные имена и указывающую какие функции должен выполнять каждый уровень. Полное описание этой модели занимает более 1000 страниц текста.

После разработки концепции открытых систем программные средства для операторских станций стали самостоятельным продуктом, свободно компонуемым с программно-техническими средствами разных производителей. Специализация изготовителей позволяет им сосредоточиться на проблемах создания программного обеспечения (ПО) для компьютерных станций в автоматизированных системах управления технологическими процессами (АСУТП), причем к разработкам привлекаются программисты высокой квалификации. Имеется функция поддержки сетевых связей. Заботой разработчиков становится обеспечение программных систем средствами связи с контроллерами и устройствами разных производителей. Большое количество контроллеров с разными аппаратно-программными платформами и постоянное увеличение их числа заставляет разработчиков включать в состав программной системы большое количество готовых драйверов (до 700 - 800) и инструментарий для разработки новых драйверов.

Современные системы SCADA/HMI хорошо структурированы и представляют собой готовые к применению и согласованные по функциям и интерфейсам наборы программных продуктов и вспомогательных компонентов. В сетевых системах средствами SCADA/HMI реализуются станции разного функционального назначения, взаимодействующие между собой в системах (АСУТП). Они включают в свою номенклатуру разные типы: станции-серверы и станции-клиенты, взаимодействующие в структуре «клиент-сервер»; станции наблюдения (мониторинга) для руководящих работников; специальные станции архивирования данных и документирования данных и событий и др.

В SCADA/HMI-системах широко применяется принцип модульного построения, реализуемого в двух основных вариантах.

В первом случае для системы, обеспечивающей полный набор базовых функций, создаются дополнительные пакеты - опции, реализующие необязательные в применении функции контроля и управления, например, SPC, Batch Control.

Во втором случае система создается из функциональных модулей, реализующих отдельные функции контроля и управления. Модули в достаточной мере независимы и могут применяться на отдельных функциональных станциях или свободно компоноваться в разных сочетаниях при разработке станций. Таким образом, могут создаваться, например, станции наблюдения, станции «слепой узел» (концентратор данных в сети) или станции со свободно формируемым набором функций.

С ростом мощности компьютеров и соответствующим ростом информационной мощности операторских станций соответственно потребностям приложений SCADA/HMI-системы становятся масштабируемыми, они выпускаются в вариантах, которые при сохранении в целом функционального профиля поддерживают от нескольких десятков или сотен до десятков тысяч входов-выходов.

SCADA/HMI-системы ведущих производителей получают расширение в иерархии уровней управления производством «по вертикали» - в сторону непосредственного управления процессом (автоматическое регулирование и программно-логическое управление), и в сторону управления производством. Такие программные системы представляют собой мощные программные комплексы, обеспечивающие ИАСУ производством в целом. Использование в системах разных уровней единых стиля оформления, терминологии, инструментария, служебных средств и т.д., значительно облегчают проектантам и системным интеграторам разработку СУ, а предприятиям - их освоение и эксплуатацию. Функции непосредственного управления реализуются в пакетах прикладных программ для контроллеров, построенных на основе персональных компьютеров (SoftPLC), и для компьютерной реализации функций непосредственного управления (SoftControl). На уровне управления производством для диспетчерского управления (Manufacturing Executing System ~ MES) вполне применимы SCADA/HMI-системы для АСУТП. Сбор, отображение, архивирование данных и протоколирование хода производства средствами систем SCADA/HMI успешно применяется в АСУП. Однако особенности функций диспетчерского управления привели разработчиков SCADA/HMI-систем к созданию специальных программных продуктов для уровня управления производством. В них важную роль играет функция поддержки принятия решений перед перераспределением материальных и энергетических потоков в технологической схеме производства - путем оценки результатов предполагаемых решений средствами моделирования. Использование стандарта моделирования существенно облегчает разработчикам создание программных систем, а разработчикам проектов - освоение систем и переход от одной системы к другой.

Прогресс в области SCADA-систем в последние годы получил значительное ускорение. Использование новейших информационных технологий, интеграцию приложений, встраивание стандартных языковых средств для программирования пользовательских алгоритмов и экранных взаимодействий значительно повысили эффективность SCADA-систем. В распоряжении пользователей разных групп появился мощный инструментарий. Технологии распределенной межсетевой архитектуры для корпоративных систем DNA (Distributed interNet Architecture) в среде MS Windows, комплексирование продуктов для управления технологией создают новые возможности в ИАСУ и перераспределение функций между ними. Теперь в дежурный список поддерживаемых системами технологий и интерфейсов дополнительно к уже ставшим традиционными DDE, DLL, OLE, ODBC/SQL включаются объектные компонентные модели COM/DCOM с ActiveX, технологии Java, универсальный интерфейс связи с внешними устройствами ОРС. языки стандарта IEC 61131-3, языки описаний на основе Visual Basic for Applications, Internet/Intranet и т.д.