Смекни!
smekni.com

Расчет радиально-сверлильного станка модели 2А55 (стр. 3 из 12)

Исходя из этого, можно причислить данную схему к двум режим работы:

1) Ручной режим работы станка;

2) Полуавтоматический режим работы станка.

С одной стороны, мы можем причислить ручной режим работы станку, так как переключение переключателя производится при помощи человека без вмешательства автоматики.

С другой стороны, мы можем причислить полуавтоматический режим работы станку, так как в схеме задействованы элементы автоматики, а именно конечные выключатели (SQ 1, SQ 2, SQ 3, SQ 4), которые служат для ограничения перемещения траверсы в крайние нижние и верхние положения.

И тот и другой выбор режима работы станка будет верен. Поэтому не будет считаться ошибкой то, что выбор был произведен в одну или в другую сторону.

3 ТРЕБОВАНИЯ К ЭЛЕКТРОПРИВОДУ И АВТОМАТИКИ РАДИАЛЬНО – СВЕРЛИЛЬНОГО СТАНКА МОДЕЛИ 2А55

Существует определённый свод правил, который четко определяет требования к электроприводам и требования к автоматики всех станков. К электроприводам станков можно отнести следующее: Приводы подач, приводы подачи охлаждающей эмульсии и подачи смазочных материалов, привод шпинделя, перемещения столов и траверсы и т.д. К элементам автоматики станков можно отнести следующее: реле времени, конечные выключатели, путевые выключатели, переключатели, микропереключатели, приборы активного контроля и другие.

К электроприводам сверлильных станков предъявляются следующие требования:

1) Если на станке производится нарезание резьбы, то привод шпинделя должен быть реверсивным;

2) Схема управления должна ограничивать перемещения траверсы;

3) Должна быть предусмотрена блокировка, не допускающая включение двигателя перемещения траверсы, когда она зажата;

4) Не допускается работа станка с не зажатой колонной.

Диапазон регулирования скорости главного движения составляет: ( 100 – 120 ) : 1.

Главный привод сверлильных станков осуществляется от асинхронных короткозамкнутых двигателей ( АД с КЗ ротором ).

Регулирование частоты вращения шпинделя производится переключением шестерён коробки передач.

Для уменьшения числа промежуточных передач в отдельных случаях возможно применять многоскоростные асинхронные двигатели.

Для привода перемещения рукава ( траверсы ) и зажима колонны применяют отдельные асинхронные электродвигатели.

Привод подачи сверлильных станков обычно выполняется от главного двигателя. Для этого коробка передач располагается на шпиндельной бабке ( сверлильная головка ). Общий диапазон регулирования скорости подачи для вертикально – сверлильных станков ( 2 – 24 ) : 1, для радиально – сверлильных станков ( 3 – 40 ) : 1.

Требования к автоматике радиально – сверлильного станка модели 2А55:

Элементами автоматики в схеме радиально – сверлильного станка модели 2А55 являются следующие элементы:

1) Конечные выключатели и переключатели;

2) Переключатели автоматического зажима и отжима.

Конечные выключатели (SQ1, SQ2, SQ3, SQ4) служат для ограничения перемещения траверсы в крайние нижние и верхние положения.

В схеме станка предусмотрены два переключателя автоматического зажима. Они предназначены для обеспечивания реверса двигателя, на подъём и опускания траверсы, зажима гайки в карман, после перемещения траверсы.

4 ВЫБОР РОДА ТОКА И НАПРЯЖЕНИЯ

Приступая к теме тока и напряжения, хотелось подробнее изучить историю открытия этих явлений. В данном пункте дипломного проекта будет рассказано о понятии тока и напряжении, о их разновидностях (родах), о единицах измерения, и т.д. Сначала расскажем о электрическом токе.

1) Понятие тока:

Слово “ток” означает движение или течение чего-то. Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле. Чтобы электрический ток в проводнике существовал длительное время, необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока. Если полюсы соединить проводником, то под действием поля свободные заряженные частицы в проводнике будут двигаться, возникнет электрический ток.

2) История открытия и возникновения электрического тока в жизни человека:

До 1650 года - времени, когда в Европе пробудился большой интерес к электричеству, - не было известно способа легко получать большие электрические заряды. С ростом числа ученых, заинтересовавшихся исследованиями электричества, можно было ожидать создания все более простых и эффективных способов получения электрических зарядов.

Отто фон Герике придумал первую электрическую машину. Эта машина оказала большую помощь в экспериментальном изучении электричества, но еще более трудные задачи “хранения” и “запасания” электрических зарядов удалось решить лишь благодаря последующему прогрессу физики.

Первый кто открыл иную возможность получения электричества, нежели с помощью электризации трением, был итальянский ученый Луиджи Гальвани (1737-1798).

Итальянский ученый Алессандро Вольта(1745-1827) окончательно доказал, что если поместить лягушачьи лапки в водные растворы некоторых веществ, то в тканях лягушки гальванический ток не возникает. В частности, это имело место для ключевой или вообще чистой воды; этот ток появляется при добавлении к воде кислот, солей или щелочей.

В начале 19 века Ганс Христиан Эрстед сделал открытие совершенно нового электрического явления, заключавшегося в том, что при прохождении тока через проводник вокруг него образуется магнитное поле.

Спустя несколько лет, в 1831 году, Фарадей сделал ещё одно открытие, равное по своей значимости открытию Эрстеда. Фарадей обнаружил, что когда движущийся проводник пересекает силовые линии магнитного поля, в проводнике наводится электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник. Наведённая ЭДС меняется прямо пропорционально скорости движения, числу проводников, а также напряжённости магнитного поля. Перемещая вручную одиночный проводник или проволочную катушку в магнитном поле, больших токов получить нельзя. Более эффективным способом является намотка провода на большую катушку или изготовление катушки в виде барабана. Катушку затем насаживают на вал, располагаемый между полюсами магнита и вращаемый силой воды или пара. Так, в сущности, и устроен генератор электрического тока, который относится к механическим источникам электрического тока, и активно используется человечеством в настоящее время.

3) Роды тока:

В природе существует два рода тока, которые применяются до сих пор на производстве.

1) Переменный ток – это упорядоченное движение частиц, которые меняют свою величину и направление и имеет синусоидальную зависимость. Переменный ток различают одно и трёх фазный. На однофазном переменном токе могут работать различные электрические приёмники: катушки различных реле, магнитных пускателей, контакторов, реле времени, промежуточных реле и т.д. Трёхфазный переменный ток потребляют асинхронный двигатели с короткозамкнутым ротором, асинхронные двигатели с фазным ротором, трёх обмоточные трансформаторы. Потребители переменного тока могут питаться напряжениями: 24, 36, 110, 127, 220, 380, 660, 1000 В и выше. На электросхемах переменный ток обозначается так – ( ~ ). Вырабатывается переменный ток при помощи генераторов переменного тока, и транспортируется по воздушным и кабельным линиям непосредственно к потребителям.

2) Постоянный ток – это упорядоченное движение частиц, которые движутся в одном направлении, не меняя свою величину. Постоянный ток потребляют некоторые катушки промежуточных реле, указательных реле, реле напряжения и другие, которые относятся к универсальным аппаратам. Постоянный ток потребляют двигатели постоянного тока, генераторов постоянного тока, электромагниты или электромагнитные муфты. Потребители постоянного тока могут питаться напряжениями: 2, 4, 6, 12, 24, 48, 60, 110, 220, 380, 660, 1000 В и выше. На электросхемах постоянный ток обозначается так – (  ). Получить постоянный ток возможно получить при помощи соляных батарей, аккумуляторов и др. Также возможно из постоянного тока получить переменный ток. Это осуществляется включением в схему такого прибора, как уфометр. Также возможно из переменного тока получить постоянный ток. Это возможно при включении в схему выпрямительных диодов. Применяется постоянный ток в основном в телерадио – механике и также на трамвайных линиях.

4) Единица измерения тока, величина тока, измерение тока:

Единой единицей измерения силы тока является А – ампер.

Также существуют 3 величин ампер:

1) А – ампер;

2) кА – кило ампер;

3) мА – мега ампер.

Существуют также миллиамперы и микроамперы. Но их формулировка и использование в работе наименее редки.

Сила тока измеряется включением в цепь амперметра, который, будучи включенным, измерят величину силы тока на данном участке цепи.

5) Основные источники тока:

В настоящее время человечество использует четыре основные источника тока:

1) Статический ток;

2) Химический ток;

3) Механический ток;

4) Полупроводниковый ток (т.е. солнечные батареи).

Теперь пришла очередь вспомнить о напряжении:

1) Понятие напряжения:

Термин электрическое напряжение применяется при описании процессов в цепях не только постоянного, но и переменного тока, в линиях передач и антеннах. Напряжение — обобщенное понятие разности потенциалов.

2) История открытия напряжения: