Смекни!
smekni.com

Проектирование автоматической системы управления температурным режимом печи пиролиза П-101 установки (стр. 6 из 16)

3.2 Математическое описание объекта управления

Для расчета САР необходимо знать математическую модель объекта управления, т.е. уравнения, которые описывают процессы, происходящие в системе.

Аналитический вывод таких уравнений для промышленных объектов довольно сложен, поэтому модель динамики объекта получена методом активного эксперимента, который заключается в снятии переходных характеристик и определении по ним видов и коэффициентов передаточной функции. Переходная характеристика представляет собой решение дифференциального уравнения системы при ступенчатом входном воздействии и нулевых начальных условиях. Она, как дифференциальное уравнение, характеризует динамические свойства линейной системы:

- стационарность свойств объекта;

- линейность объекта регулирования;

- сосредоточенность параметров объекта.

3.3.1 Эксперимент по определению динамических характеристик

Математическая модель объекта управления была получена методом активного эксперимента. Метод заключается в снятии переходных характеристик и определения по ним коэффициентов передаточной функции.

По выбранному контуру в процессе прохождения производственной практики был проведен активный эксперимент, следующим образом.

На вход системы с отключенным регулятором подали ступенчатое воздействие в виде 5% открытия клапана. Затем снимаем переходную характеристику.

Рис. 3.1. Ступенчатое воздействие на объект

В результате ступенчатого воздействия на объект были получены кривые разгона, представленные на рисунках 3.1-3.5.


Рис. 3.2. Кривая разгона по каналу степень открытия топливного клапана – расход метана (экспериментальные данные)

Рис. 3.3. Кривая разгона по каналу степень открытия топливного клапана – температура продукта на выходе печи (экспериментальные данные).

Рис. 3.4. Ступенчатое воздействие. Изменение расхода сырья в печь


Рис.3.5. Кривая разгона по каналу расход сырья – температура продукта на выходе (экспериментальные данные)

3.3.2 Обработка результатов исследования объекта

Экспериментальные данные, представленные в п. 3.3.1, были рассмотрены в качестве кривых разгона объекта с целью получения передаточных функций по каналам и соответствующих настроек регуляторов. Для определения коэффициентов передаточных функций объекта регулирования используем прикладную программу LinRegTV.

Рис. 3.6. Кривые разгона по каналу степень открытия топливного клапана – расход метана


Рис. 3.7. Кривые разгона по каналу степень открытия топливного клапана – температура продукта на выходе

Рис.3.8. Кривые разгона по каналу расход сырья – температура продукта на выходе

Из рисунков 3.6 – 3.8 можно отметить, что расчетные и экспериментальные временные характеристики имеют отличие:

· относительная погрешность по каналу расхода метана – 0,003;

· относительная погрешность по каналу % открытия топливного клапана, температура на выходе печи – 0,001;

· относительная погрешность по каналу расход сырья, температура на выходе печи– 0,0004;

Данная разница связана с методом расчета передаточных функций объекта.

Методом Симою в прикладной программе "LinregTV" были получены следующие передаточные функции объекта:

1) Передаточная функция объекта по каналу % открытия топливного клапана –расход природного газа имеет вид:

(3.1)

· СКО=0,006;

· Диапазон частот: ωрек=[0 ; 1,3] (сек-1).

КЧХ объекта представлена ниже (см. также Приложение А):

Рис. 3.9. КЧХ объекта по каналу % открытия топливного клапана – расход метана.

2) Передаточная функция объекта по каналу % открытия топливного клапана - температура продукта на выходе печи:


(3.2)

· СКО=0,012;

· Диапазон частот: ωрек=[0 ; 0,0019] (сек-1).

КЧХ объекта представлена ниже (см. также Приложение Б):

Рис. 3.10. КЧХ объекта по каналу % открытия топливного клапана - температура продукта на выходе печи.

3) Передаточная функция объекта по каналу расход сырья - температура на выходе печи:

(3.3)

· СКО=0,01;

· Диапазон частот: ωрек=[0 ; 0,0017] (сек-1).

КЧХ объекта представлена ниже (см. также Приложение В):


Рис. 3.11. КЧХ объекта по каналу расход сырья – температура на выходе печи.


4. Алгоритмизация, расчеты и моделирование АСР

4.1 Характеристика технологического объекта и оценка действующих возмущений

В качестве технологического объекта управления в дипломном проекте рассматривается печь паро-углекислого пиролиза природного газа установки получения водорода на ЗАО "Сибур-Химпром" (см. раздел "Краткое описание технологического процесса и характеристика технологического объекта управления").

По способу передачи тепла выбранный объект относится радиантно - конвекционной печи.

Причиной появления несовершенства в процессе регулирования являются возмущения, действующие на объект. Для оценки таких возмущений и установления их связи с обозначенными проблемами, воспользуемся рисунком 4.1.

Рис. 4.1. Блок-схема П-101 для оценки возмущений.

Задачей регулирования является поддержание заданного значения выходной температуры потока:

(4.1)

Регулирующим воздействием на объект является расход топливного газа.

В анализируемом проекте указанные выше параметры регулируются одноконтурными АСР.

Большую часть возмущений, действующих на объект, создают колебания давления в системе подачи топливного газа и компрессор на линии подачи сырья (возмущения по нагрузке).

Таким образом, ликвидация возмущающих воздействий, действующих на объект, будет полностью определяться качеством регулирования в печи. Улучшение качества регулирования в свою очередь окажет положительное влияние на тепловую работу печи. Тепловая работа П-101 в наибольшей мере характеризуется и определяется ее температурным и тепловым режимами.

Температурный режим характеризуется выходной температурой сырья, величиной, которая для перерабатываемого сырья определяется на основании технологического регламента установки, а для объекта - нормами технологического режима. Поддержание температурного режима согласно норме позволит получать продукт на выходе печи необходимого качества для дальнейшей переработки в последующих блоках с целью получения конечного продукта. Отметим, что вопросы, связанные с влиянием температурного режима печи на процентное содержание водорода в пирогазе, были освещены и исследованы в п. 2.6-2.9. раздела "Технико-экономическое обоснование автоматизации объекта". На основании выполненных анализов и исследований, по данному вопросу, принимаем:

· при управлении температурным режимом трубчатой печи в качестве критерия будем принимать выходную температуру сырья.

· в качестве управляющих воздействий - изменение расхода топливного газа при подаче в печь П-101.


4.2 Сравнительный анализ и выбор АСР, для поддержания заданной температуры продукта на выходе печи

Возможными вариантами регулирования температуры на выходе печи являются: непосредственное регулирование по выходу и с применением коррекции по нагрузке. Поскольку запаздывание в АСР является одним из факторов, ухудшающих качество процесса управления, и при регулировании учитывающем нагрузку на печь время запаздывания уменьшается по сравнению с регулированием по выходу, то разрабатываемая в дипломном проекте АСР для поддержания заданной температуры продукта на выходе из печи П-101, будет осуществлять регулирование по выходу с коррекцией по нагрузке, исходя из большей информативности, качества и минимизации запаздывания. Системы, поддерживающие требуемую температуру продукта на выходе из трубчатой печи, могут быть синтезированы в классе 1 контурных, 2- и 3 контурных каскадных АСР. Каскадные системы являются одним из наиболее распространенных классов многосвязных АСР. Необходимость их применения обусловлена тем, что промышленный объект (печь П-101) характеризуются большим запаздыванием и значительными. Вследствие ограниченных величин коэффициентов передачи регуляторов и невысокого быстродействия системы, применение одноконтурных АСР для управления такими объектами не всегда обеспечивает требуемое качество управления.