Ни один транзистор не обладает таким коэффициентом усиления по току. Поэтому используются составные транзисторы, которые позволяют увеличить
Рисунок 12. Схема усиления на составных транзисторах
Входной ток является током базы транзистора Т1. Т.к. существует ток базы у 1го транзистора появляется ток коллектора 1го транзистора, который является достаточным током базы для 2го транзистора. Под действием тока базы Iб2 второй транзистор открывается и появляется Ik2, который является током базы для 3го транзистора. Через транзистор Т3 начинает протекать Ik3.
Коэффициент
Для уменьшения потерей используется схема Шиклая:
Рисунок 13. Схема Шиклая
Входной ток, протекая через базу транзистора Т1 открывает его. Возникает ток коллектора Iк1, который является током базы для n-p-n транзистора Т3. В нем возникает ток коллектора, который протекает через базу второго транзистора. Под действием этого тока он открывается и в нем возникает ток коллектора Ik2. Общий коэффициент усиления
Режим реверса реализуется с введением второго транзистора (n-p-n), показанного на схеме ниже:
Рисунок 14. Схема с режимом реверса
Ток, протекая через базу транзистора Т2 открывает его и возникает Ik2.
Для исключения влияния температурного фактора на разрабатываемую схему вместо управления двигателем по напряжению будем использовать управление двигателем по току. Для этого в цепь включается прецизионный по температуре резистор очень небольшого сопротивления 0.01 Ом. В этом случае при изменении температуры сопротивление резистора изменится незначительно, что как раз и дает устойчивость системы к температурному фактору. Падение напряжения на резисторе составляет:
Uпал = 0.01Ом * 10А = 0.1В
Это очень малая величина, которая не сказывается на КПД двигателя.
Рисунок 15. Схема управления двигателем по току
Рассчитаем необходимый коэффициент усиления в цепи обратной связи:
Мощность, рассеиваемую на транзисторе, можно найти по формуле:
Построим график зависимости рассеиваемой мощности Pтр от напряжения нагрузки Uн:
Рисунок 16. График рассеиваемой мощности
Из графика видно, что максимум рассеиваемой мощности приходится на напряжение ½ Eпит на нагрузке. Следует учитывать, что для отвода 10 Вт рассеиваемой мощности необходимо пространство объемом 1 литр.
Так как двигатель обладает высокой постоянной времени, то он будет продолжать вращаться еще некоторое время после снятия питания. Это свойство используют в импульсных схемах, где напряжение на нагрузку подается не постоянно, а импульсами. Двигатель в этом случае работает в так называем квазилинейном режиме.
Существует множество видов модуляции. Наиболее известные это:
1. Широтно-импульсная модуляция (ШИМ)
2. Частотно-импульсная модуляция (ЧИМ)
3. Амплитудно-импульсная модуляция (АИМ)
4. Импульсная модуляция (ИМ)
ШИМ:
Рисунок 17. Внешний вид широтно-импульсной модуляции
При ШИМ период следования импульсов Т постоянен, изменяется ширина импульса Tи.
ЧИМ:
Рисунок 18. Внешний вид частотно-импульсной модуляции
Ширина импульса постоянна, различна частота их следования.
Модуляция позволяет снизить энергозатраты, что приводит к увеличению КПД. Также т.к. через транзистор не всегда течет ток, на нем меньше рассеивается мощности.
Выбираем ШИМ как наиболее простой в реализации вид модуляции – реализуется при помощи генератора пилообразного напряжения и компоратора.
Преобразуем исходную схему линейного усилителя в импульсную:
Рисунок 19. Импульсная схема усилителя
В разрабатываемой системе нет отрицательного источника питания, поэтому модернизируем исходную схему, избавившись от отрицательного источника питания:
Рисунок 20. Импульсная схема усилителя с одним источником питания
В представленной схеме для того, чтобы двигатель вращался в одну сторону в точке А создается потенциал +12В, а в точке B 0В. Для вращения двигателя в другую сторону данные потенциалы меняются местами. Если же необходимо, чтобы двигатель не вращался в обоих точках задается потенциал равный +6В.
Вывод : Окончательная импульсная схема управления двигателем с использованием одного источника питания +12В и Н-моста:
Рисунок 21. Импульсная схема управления на КМОП-транзисторах
В схеме используются КМОП транзисторы как имеющие меньшее падение напряжения.
В разрабатываемой схеме будем использовать усилитель фирмы APEX Microtechnology SA60. Его основные характеристики:
· Рабочая частота – 500 кГц;
· Полномостовой выход 0,1-80 В;
· Выходной ток – 10 А;
· Занимаемая площадь – 1 кв. дюйм;
· Герметичный и удароустойчивый корпус.
4.3 Обоснование и выбор датчика угловой скорости:
Для осуществления обратной связи в цепи управления двигателем по скорости вращения вала двигателя необходим датчик угловой скорости.
К датчикам предъявляются следующие требования:
· Линейность
· Чувствительность (разрешающая способность)
· Стабильность характеристик во времени, температуре, давлении, влажности
· Устойчивость к химическим, физическим воздействиям и т.д.
· Технологичность
Все датчики можно разделить на контактные и бесконтактные. Контактные не подходят для разрабатываемой схемы, т.к. у них низкая надежность и срок службы. Гораздо эффективнее использовать бесконтактные датчики. Они бывают следующего исполнения:
1. Резистивные:
где
Положительными качествами таких датчиков являются простота, доступность и высокая чувствительность. Отрицательными – низкая надежность (трущиеся материалы), влияние механических воздействий («ступеньки») при переключении, низкая линейность, большой начальный момент трогания.
2. Емкостные:
где S – это площадь, d – расстояние между обкладками
Данная группа датчиков обладает отсутствием трения, «тяжения» и высокой надежностью. Однако, их недостатками является нелинейность, сложность обработки сигналов, низкая точность.
3. Индуктивные – измеряется магнитное поле, которое создается током, протекающим по проводнику.
Такие датчики ценят за простоту конструкции, высокую точность, линейность и надежность. Но у них есть ряд отрицательных качеств: сложность обработки сигнала, большие масса-габаритные показатели и наличие «тяжения».