Определяем St:
Общий запас прочности определяется по формуле:
S=
S≥[S]=1.5…2.5, т. е. условие выполняется.
6.4 Выбор элементов передающих крутящий момент
Для все соединений со шкивами назначаем шпоночное соединение, а для все остальных соединений ринимаем шлицевое соединение, которое имеет следующие размеры рабочих частей :
Шлицевое соединение подлежит проверке на смятие, которая проводится по формуле:
Остальные соединения выполняются по Мкр, меньшего от момента на шкиву.
Все выбранные шлицевые соединения соответствуют условию прочности при проверке на смятие.
Соединение со шкивами.
Проверим выбранные шпонки на смятие:
где
Рисунок 5 Размеры шпоночного соединения.
d, мм | lр, мм | T, Нм | [σсм], МПа | σсм, МПа | количество: | b, мм | h, мм | t1, мм | t2, мм |
36 | 45 | 2371 | 100 | 89,89 | 1 | 10 | 8 | 5,5 | 5 |
80 | 55 | 2371 | 100 | 92,86 | 1 | 10 | 8 | 5,5 | 5 |
Остальные соединения выполняются по Мкр, меньшего от момента на шкиву.
Все выбранные шлицевые соединения соответствуют условию прочности при проверке на смятие.
Учитывая элементы, расположенные на валах, а также по диаметрам шипов, выбираем подшипники, параметры которых сносим в таблицу 8.
Таблица 4 – Параметры подшипников.
Подшипник | внутренний диаметр d, мм | наружный диаметр D, мм | ширина кольца B, мм | статическая грузоподъемностьC0,кН |
418 | 90 | 210 | 52 | 174 |
266418 | 90 | 225 | 108 | 337 |
246315 | 75 | 160 | 74 | 212 |
46315 | 75 | 160 | 37 | 131 |
246418 | 90 | 225 | 108 | 337 |
Проверочный расчет подшипников.
Фактическая долговечность подшипника
где С – динамическая грузоподьемность, кН.
Р – приведенная грузоподьемность, кН.
r - коэфициент формы тел качения,
Приведенную грузоподьемность:
де V – „коэфициент кольца”: V=1 при вращении внутреннего кольца, V=1,2 при при вращении наружного кольца;
R, A – радиальная и осевая нагрузка на подшипник;
X, Y – коэфициенты приведения R, A; Х=1. [3 с. 68 табл.8.4]
- при
На первом валу:
- для радиального шарикоподшипника 418:
- для сдвоенного радильно-упорного подшипника 266418:
На втором валу:
- для сдвоенного радильно-упорного подшипника 246315:
- для радильно-упорного подшипника 46315:
На третьем валу:
- для радильно-упорного подшипника 46315:
8 Расчет динамических характеристик привода главного движения
Задачи расчета.
Привод подачи станка при обработке детали нагружен крутящим моментом, который вследствие особенностей кинематики процесса резания, переменности припуска на детали и физико-механических свойств ее материала изменяется во времени. В результате в нем возникают крутильные колебания, обусловливающие динамические нагрузки, появление изгибных колебаний, снижение производительности обработки, уменьшение долговечности станка, а в некоторых случаях и потерю устойчивости его динамической системы. С целью обеспечения требуемого качества станка динамические характеристики привода рассчитывают при его проектировании и производят корректировку конструкции.
Составление расчетной схемы привода. Представим, что конструкция привода разработана в соответствии с кинематической схемой. Необходимо произвести его динамический расчет и анализ.
Рис. 6 - Кинематическая схема привода главного движения для динамического расчета.
Определяем моменты инерции всех вращающихся элементов привода. Момент инерции (кг×м2) детали, являющейся сплошным телом вращения, определяется по зависимости
где r — плотность материала детали, кг/м3; d и l - диаметр и длина детали, м.
Детали длиной до 1,5—2 их диаметра принимают в качестве сосредоточенных масс. В рассматриваемой конструкции это ротор электродвигателя, шкивы, блоки зубчатых колес, муфты.
Валы являются распределенными массами. При длине вала до 300 мм к моментам инерции находящихся на нем сосредоточенных масс присоединяют треть момента инерции вала.
Моменты инерции муфт и шкивов рассчитаем как зубчатых колес:
где d, D – радиус вершин и радиус впадин зубчатого колеса;
h – ширина ступицы или зубчатого венца.
Все вычисленные моменты инерции заносим в таблицу 10.
Таблица 10 - Моменты инерции элементов привода подач.
Наименование элемента | Момент инерции элемента I, кг×м2 |
Ротор электродвигателя | 0,05 |
Шкив I, II | 0,72 |
Вал I | 0,024 |
Вал II | 0,0084 |
Вал III | 0,012 |
Зубчатое колесо (вал – I, z=35) | 0,0015 |
Зубчатое колесо (вал – II, z=35) | 0,0015 |
Зубчатое колесо (вал – II, z=56) | 0,12 |
Зубчатое колесо (вал – III, z=56) | 0, 12 |
Находим крутильную податливость элементов приводов. Зубчатые муфты и муфты фрикционного действия не учитываются. Крутильная податливость ременной передачи связана с расчетной длиной ветви между шкивами:
где L - межосевое расстояние, м; D1 и D2 —диаметры шкивов, м; V — скорость ремня, м/с;
Податливость ременной передачи:
k - коэффициент, учитывающий условия работы передачи: к = 1, когда окружная сила Р вдвое больше силы предварительного натяжения Р0, к = 2 при Р < 2Ра; Е — модуль упругости ремня, МПа (модуль упрутости зубчатых ремней со стальным кордом, клиновых ремней со шнуровым кордом плоских полимерных ремней соответственно равен 6000...35000МПа, 600...800,2200...3800 МПа); F - площадь поперечного сечения ремня, м2.
Крутильную податливость для сплошных валов: